Smart and scalable epidemic prediction and control

智能、可扩展的疫情预测和控制

基本信息

  • 批准号:
    MR/W016834/1
  • 负责人:
  • 金额:
    $ 165.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Novel infectious diseases, such as SARS and COVID-19, are pre-eminent threats to public health. In the absence of vaccines or prior immunity and the presence of large uncertainties surrounding the characteristics of these diseases when they emerge, models form our first line of defence. Mathematical models are computational tools that combine our knowledge of how diseases spread with available epidemic data, for example daily counts of cases. Models can provide understanding of the key factors driving transmission, forecasts of upcoming cases or deaths and estimates of the potential impact of non-pharmaceutical interventions (NPIs), such as social distancing or lockdowns. Given this predictive power, model outputs often serve as evidence for policymaking. However, the reliability of this evidence can depend substantially and sometimes unexpectedly on the scale or level of detail of the model. Epidemics are complex phenomena, involving differences, called heterogeneities, in spread across geographic, demographic and other scales. Fine scale models simulating all of these heterogeneities may yield unreliable forecasts because we may only have scarce data on each difference and have to make more assumptions to use the model. Coarse models, which average these heterogeneities over an entire country or ignore differences due to age-based risks, may be easier to use but overconfident and only able to evidence blunt NPIs such as lockdowns. Selecting the right scale at which to model and respond to infectious diseases is a problem at the forefront of epidemiology. Getting this scale wrong could misinform policy, making pandemic response risky, costly and ineffective.Two main issues make this model selection problem fundamentally challenging. First, the most reliable scale for modelling (e.g. locally, regionally or nationally) varies with location, time and response to NPIs. Existing models rarely adapt to this fluctuation or when they do tend to become very complex. Second, noisy data, logistical constraints on policy (e.g. school closures may only occur district-wide) and the reactive behaviours of people impose largely unknown performance limits on models, restricting the horizons of forecasts or efficiency of NPIs. I will develop smart models to resolve these issues. By connecting simple epidemic models into hierarchies or groups, where each lower-level group depicts some heterogeneity of interest and each higher one averages over that heterogeneity, I aim to construct novel models that realistically describe the many interacting scales of pandemics. Information theory and decentralised control theory are engineering fields that offer unique and rigorous ways of mitigating uncertainty and managing reactive loops that are seldom used in epidemiology. By combining principles from these fields together with expert input from policy scientists, I will design new algorithms that restructure these hierarchies to expose and bypass performance limits, and to pinpoint the most reliable scales for practically combatting pandemics at any time. These smart frameworks, which intelligently balance the details of spread with the available data to reliably learn about those details, will push the boundaries of epidemic modelling. Applying them to diverse SARS and COVID-19 datasets, I will (i) derive robust early-warning indicators of transmission (e.g. signs that foretell if an epidemic might have a second wave), (ii) improve understanding of how limits to modelling translate into restrictions on how well we can predict or control outbreaks and (iii) derive new strategies for coordinating NPIs across different scales to improve the efficiency of future pandemic response (e.g. discovering when combinations of local lockdowns might be more effective than a national one). Smart models, which adapt to the changing reality of pandemics, can solidify the evidence base for reliable and better-informed public health policy.
新型的传染病,例如SARS和Covid-19,是对公共卫生的杰出威胁。在没有疫苗或先前的免疫力以及这些疾病出现时围绕这些疾病特征的大型不确定性的情况下,模型构成了我们的第一条防御线。数学模型是计算工具,可以结合我们对疾病如何传播与可用流行数据(例如每日病例计数)的了解。模型可以提供对驱动传播的关键因素的了解,对即将发生的案件或死亡的预测以及对非药物干预措施(NPI)的潜在影响(例如社会疏远或锁定)的潜在影响的估计。鉴于这种预测能力,模型输出通常是决策的证据。但是,该证据的可靠性可能会在很大程度上,有时出乎意料地取决于模型的细节规模或水平。流行病是复杂的现象,涉及差异,称为异质性,分布在地理,人口统计和其他量表中。模拟所有这些异质性的精细规模模型可能会产生不可靠的预测,因为我们可能只有在每个差异上都有稀缺的数据,并且必须做出更多的假设来使用该模型。粗糙的模型平均在整个国家中平均这些异质性或由于基于年龄的风险而忽略差异,可能更易于使用,但过度自信,只能证明诸如锁定的NPI。选择适当的对传染病进行建模和反应的规模是流行病学的最前沿的问题。弄错了这个规模可能会误导政策,使大流行的反应风险,代价高昂和无效。两个主要问题使该模型选择问题从根本上具有挑战性。首先,建模最可靠的量表(例如,本地,区域或全国范围内)随着位置,时间和对NPI的响应而异。现有模型很少适合这种波动,或者当它们确实变得非常复杂。其次,嘈杂的数据,政策的后勤限制(例如,封闭可能仅发生在范围内),以及人们的反应性行为对模型施加了很大的绩效限制,从而限制了NPI的预测或效率的视野。我将开发智能模型来解决这些问题。通过将简单的流行模型连接到层次结构或群体中,每个较低级别的群体都描绘了某些关注的异质性,并且每个较高的平均值都比该异质性,我旨在构建新型模型,这些新模型实际描述了许多大流传学的相互作用量表。信息理论和分散控制理论是工程领域,它们提供了减轻不确定性和管理反应性循环的独特而严格的方法,这些循环很少在流行病学中使用。通过将这些领域的原则与政策科学家的专家投入结合在一起,我将设计新的算法来重组这些层次结构以揭示和绕过绩效限制,并确定最可靠的量表,以便任何时间打击Pandemics。这些智能框架可以智能地平衡点差的细节和可靠的数据,以可靠地了解这些细节,这将推动流行性建模的界限。将它们应用于不同的SARS和COVID-19数据集中,我将(i)得出强大的早期表演指标(例如,如果流行病可能会有第二波),(ii)提高对建模的限制如何转化为限制的限制,以预测或控制新的策略(iii II II II III),请提高对建模如何限制的限制,以提高对建模的限制的理解(III)的限制。反应(例如,发现当地锁定的组合何时可能比民族锁定更有效)。适应大流行病现实的智能模型可以巩固证据基础,以获得可靠且消息灵通的公共卫生政策。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Risk averse reproduction numbers improve resurgence detection
规避风险的繁殖数量可改善复苏检测
  • DOI:
    10.1101/2022.08.31.22279450
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parag K
  • 通讯作者:
    Parag K
A Bayesian nonparametric method for detecting rapid changes in disease transmission
用于检测疾病传播快速变化的贝叶斯非参数方法
  • DOI:
    10.1101/2022.07.04.22277234
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Creswell R
  • 通讯作者:
    Creswell R
Host behaviour driven by awareness of infection risk amplifies the chance of superspreading events
  • DOI:
    10.1101/2023.08.25.23294423
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parag,Kris V;Thompson,Robin N
  • 通讯作者:
    Thompson,Robin N
Refuting Causal Relations in Epidemiological Time Series
  • DOI:
    10.1101/2023.10.01.23296395
  • 发表时间:
    2023-10-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daon,Yair;Parag,Kris V.;Obolski,Uri
  • 通讯作者:
    Obolski,Uri
Using Multiple Sampling Strategies to Estimate SARS-CoV-2 Epidemiological Parameters from Genomic Sequencing Data
  • DOI:
    10.1101/2022.02.04.22270165
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Inward, R.P.D.;Parag, K.V.;Faria, N.R.
  • 通讯作者:
    Faria, N.R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 165.49万
  • 项目类别:
    Studentship

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
  • 批准号:
    10051037
  • 财政年份:
    2023
  • 资助金额:
    $ 165.49万
  • 项目类别:
    EU-Funded
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10584588
  • 财政年份:
    2021
  • 资助金额:
    $ 165.49万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10390334
  • 财政年份:
    2021
  • 资助金额:
    $ 165.49万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10177121
  • 财政年份:
    2021
  • 资助金额:
    $ 165.49万
  • 项目类别:
Scalable Inference in Statistical Models of Viral Evolution and Human Health
病毒进化和人类健康统计模型中的可扩展推理
  • 批准号:
    10394133
  • 财政年份:
    2021
  • 资助金额:
    $ 165.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了