Scalable Inference in Statistical Models of Viral Evolution and Human Health
病毒进化和人类健康统计模型中的可扩展推理
基本信息
- 批准号:10394133
- 负责人:
- 金额:$ 2.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-11-06
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBiologicalCD4 Positive T LymphocytesCOVID-19 outbreakCell CountCharacteristicsChikungunya virusClinicalClinical DataComplexDangerousnessDataData SetDiffusionDimensionsDisease OutcomeEbolaEbola Hemorrhagic FeverEnvironmental Risk FactorEpidemicEvolutionFactor AnalysisFutureGenetic DeterminismGenomeGenotypeGoldHIVHIV-1HealthHeritabilityHumanImmune responseImmune systemIndividualInfectionIntegration Host FactorsInternationalKnowledgeLassa FeverMapsMeasurableMeasurementMeasuresMethodsModelingMutationOutcomePatientsPatternPerformancePhenotypePhylogenetic AnalysisPhylogenyProcessProxyPublic HealthResearch PersonnelResidual stateSeveritiesSourceStatistical BiasStatistical MethodsStatistical ModelsSymptomsTechniquesTreesTweensUnited StatesVariantViralViral GenomeViral Load resultVirulenceVirulentVirusVirus DiseasesWorkZIKAZika Virusbasechikungunyaclinical predictorsclinically relevantdesignflexibilityfundamental researchgenetic informationhigh dimensionalityinterestlarge datasetsmultidimensional dataoutcome predictionphenotypic datapredict clinical outcomeprediction algorithmpredictive modelingtooltraitviral genomicsvirus geneticsvirus host interaction
项目摘要
Project Summary / Abstract
Despite global public health advances, viruses remain a major threat to human health both in the United
States and internationally. Recent and continuing outbreaks of SARS-CoV-2, Ebola, Zika, Lassa fever, and
Chikungunya, as well as persistent epidemics such as HIV have emphasized the need to understand viral
evolution and virus-host interactions during epidemics. Phylogenetic statistical models of viral evolution offer
a powerful tool for studying the interplay between viral genetics and environmental or host factors. However,
current phylogenetic models are often too inflexible to realistically model these relationships, and those that
do are computationally intractable for even moderately sized data sets. This project aims to develop new
statistical models that are both flexible enough to model complex biological relationships and scalable to large
data sets of viral and host traits. The first aim is to develop more efficient and less biased statistical methods
for estimating the heritability of viral phenotypes (e.g. viral load, host CD4 T-cell count, replicative capacity).
Current statistical practices typically produced biased heritability estimates and are intractable for large data
sets. This project seeks to extend state-of-the-art inference techniques to model the heritability of viral pheno-
types (enabling both unbiased and efficient inference) and to apply these new methods to better estimate the
heritability of viral load in HIV-1. The second aim seeks to develop statistical methods for studying complex,
high-dimensional viral phenotypes such as infection severity which cannot be captured with a single measure-
ment. These phenotypes are difficult to quantify due to their inherent complexity, confounding rigorous efforts
at, say, identifying unusually virulent viral clades. While phylogenetic factor analysis enables identification and
quantification of high-dimensional phenotypes, it scales poorly to large data sets. We propose new inference
techniques that address these scalability problems and allow previously intractable analyses. We plan to apply
these new methods to study patterns of virulence in Ebola and Lassa fever and to identify unusually virulent
viral strains. Additionally, these methods are well suited to identifying epistatic interactions between viral mu-
tations and phenotypes of interest, and we plan to explore these interactions in HIV, Zika, and Chikungunya
viruses. The third aim is to develop new statistical models specifically designed to predict outcomes of viral
infections from viral sequence data. To accommodate the necessary flexibility required by these models, we
develop new inference strategies that are both highly generalizable (i.e. they do not rely on strict assumptions
in existing models) and computationally efficient. Strong predictive performance would enable researchers or
clinicians to predict clinically relevant outcomes using viral sequences, which could help inform treatment. We
will evaluate these methods using the Ebola and Lassa fever data from mentioned above.
项目概要/摘要
尽管全球公共卫生取得了进步,病毒仍然是对美国和美国人类健康的主要威胁
国家和国际上近期和持续爆发的 SARS-CoV-2、埃博拉病毒、寨卡病毒、拉沙热和
基孔肯雅热以及艾滋病毒等持续流行病强调了了解病毒的必要性
流行病期间的进化和病毒与宿主的相互作用提供了病毒进化的系统发育统计模型。
是研究病毒遗传学与环境或宿主因素之间相互作用的有力工具。
当前的系统发育模型往往过于僵化,无法真实地模拟这些关系,而那些
即使对于中等大小的数据集,计算也很困难。该项目旨在开发新的数据集。
统计模型既足够灵活,可以模拟复杂的生物关系,又可以扩展到大规模
第一个目标是开发更有效和更少偏差的统计方法。
用于估计病毒表型的遗传力(例如病毒载量、宿主 CD4 T 细胞计数、复制能力)。
当前的统计实践通常会产生有偏差的遗传力估计,并且难以处理大数据
该项目旨在扩展最先进的推理技术来模拟病毒表型的遗传力。
类型(实现无偏且有效的推理)并应用这些新方法来更好地估计
HIV-1 病毒载量的遗传性的第二个目标是开发用于研究复杂的统计方法。
高维病毒表型,例如感染严重程度,无法通过单一测量来捕获
这些表型由于其固有的复杂性而难以量化,从而阻碍了严格的努力。
例如,识别异常毒力的病毒进化枝,而系统发育因子分析可以识别和识别病毒。
高维表型的量化,它很难扩展到大数据集,我们提出了新的推论。
我们计划应用解决这些可扩展性问题并允许以前棘手的分析的技术。
这些新方法用于研究埃博拉和拉沙热的毒力模式并识别异常的毒力
此外,这些方法非常适合识别病毒 mu-之间的上位相互作用。
我们计划探索 HIV、寨卡病毒和基孔肯雅热中的这些相互作用
第三个目标是开发专门用于预测病毒结果的新统计模型。
为了适应这些模型所需的必要灵活性,我们
开发高度通用的新推理策略(即它们不依赖于严格的假设)
在现有模型中)和强大的计算效率将使研究人员或
Fortress 使用病毒序列预测临床相关结果,这有助于为治疗提供信息。
将使用上述埃博拉和拉沙热数据评估这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel William Hassler其他文献
Gabriel William Hassler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
青藏高原不同区域冰川中微生物类脂物GDGTs的分布特征及其气候环境意义
- 批准号:42371155
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
南海周边生物质燃烧与区域气候及社会经济相互作用研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
区域稻田镉生物有效性差异关键机制与定量预测
- 批准号:42277385
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于物质代谢的区域生物天然气供应链系统集成方法及资源环境效应研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
内蒙古高原生态系统生物源挥发性有机物排放量对区域环境臭氧浓度影响
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
- 批准号:
10655779 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别: