Scalable Inference in Statistical Models of Viral Evolution and Human Health
病毒进化和人类健康统计模型中的可扩展推理
基本信息
- 批准号:10394133
- 负责人:
- 金额:$ 2.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-11-06
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBiologicalCD4 Positive T LymphocytesCOVID-19 outbreakCell CountCharacteristicsChikungunya virusClinicalClinical DataComplexDangerousnessDataData SetDiffusionDimensionsDisease OutcomeEbolaEbola Hemorrhagic FeverEnvironmental Risk FactorEpidemicEvolutionFactor AnalysisFutureGenetic DeterminismGenomeGenotypeGoldHIVHIV-1HealthHeritabilityHumanImmune responseImmune systemIndividualInfectionIntegration Host FactorsInternationalKnowledgeLassa FeverMapsMeasurableMeasurementMeasuresMethodsModelingMutationOutcomePatientsPatternPerformancePhenotypePhylogenetic AnalysisPhylogenyProcessProxyPublic HealthResearch PersonnelResidual stateSeveritiesSourceStatistical BiasStatistical MethodsStatistical ModelsSymptomsTechniquesTreesTweensUnited StatesVariantViralViral GenomeViral Load resultVirulenceVirulentVirusVirus DiseasesWorkZIKAZika Virusbasechikungunyaclinical predictorsclinically relevantdesignflexibilityfundamental researchgenetic informationhigh dimensionalityinterestlarge datasetsmultidimensional dataoutcome predictionphenotypic datapredict clinical outcomeprediction algorithmpredictive modelingtooltraitviral genomicsvirus geneticsvirus host interaction
项目摘要
Project Summary / Abstract
Despite global public health advances, viruses remain a major threat to human health both in the United
States and internationally. Recent and continuing outbreaks of SARS-CoV-2, Ebola, Zika, Lassa fever, and
Chikungunya, as well as persistent epidemics such as HIV have emphasized the need to understand viral
evolution and virus-host interactions during epidemics. Phylogenetic statistical models of viral evolution offer
a powerful tool for studying the interplay between viral genetics and environmental or host factors. However,
current phylogenetic models are often too inflexible to realistically model these relationships, and those that
do are computationally intractable for even moderately sized data sets. This project aims to develop new
statistical models that are both flexible enough to model complex biological relationships and scalable to large
data sets of viral and host traits. The first aim is to develop more efficient and less biased statistical methods
for estimating the heritability of viral phenotypes (e.g. viral load, host CD4 T-cell count, replicative capacity).
Current statistical practices typically produced biased heritability estimates and are intractable for large data
sets. This project seeks to extend state-of-the-art inference techniques to model the heritability of viral pheno-
types (enabling both unbiased and efficient inference) and to apply these new methods to better estimate the
heritability of viral load in HIV-1. The second aim seeks to develop statistical methods for studying complex,
high-dimensional viral phenotypes such as infection severity which cannot be captured with a single measure-
ment. These phenotypes are difficult to quantify due to their inherent complexity, confounding rigorous efforts
at, say, identifying unusually virulent viral clades. While phylogenetic factor analysis enables identification and
quantification of high-dimensional phenotypes, it scales poorly to large data sets. We propose new inference
techniques that address these scalability problems and allow previously intractable analyses. We plan to apply
these new methods to study patterns of virulence in Ebola and Lassa fever and to identify unusually virulent
viral strains. Additionally, these methods are well suited to identifying epistatic interactions between viral mu-
tations and phenotypes of interest, and we plan to explore these interactions in HIV, Zika, and Chikungunya
viruses. The third aim is to develop new statistical models specifically designed to predict outcomes of viral
infections from viral sequence data. To accommodate the necessary flexibility required by these models, we
develop new inference strategies that are both highly generalizable (i.e. they do not rely on strict assumptions
in existing models) and computationally efficient. Strong predictive performance would enable researchers or
clinicians to predict clinically relevant outcomes using viral sequences, which could help inform treatment. We
will evaluate these methods using the Ebola and Lassa fever data from mentioned above.
项目摘要 /摘要
尽管全球公共卫生进展,但在统一的人类健康仍然是对人类健康的主要威胁
国家和国际。 SARS-COV-2,埃博拉,Zika,Lassa Fever和
chikungunya以及诸如艾滋病毒之类的持续情节强调了了解病毒的必要性
流行期间的进化和病毒宿主相互作用。病毒进化的系统发育统计模型
研究病毒遗传学与环境或宿主因素之间相互作用的有力工具。然而,
当前的系统发育模型通常太不受欢迎,无法现实地模拟这些关系,而那些关系的关系
对于即使是适度大小的数据集,在计算上也很棘手。该项目旨在开发新的
统计模型既具有足够的功能,足以模拟复杂的生物学关系,并且可扩展到大型
病毒和宿主特征的数据集。第一个目的是开发更多有效且较少有偏见的统计方法
用于估计病毒表型的遗传力(例如病毒载荷,宿主CD4 T细胞计数,复制能力)。
当前的统计实践通常会产生偏见的遗传力估计,并且对大数据很棘手
套。该项目旨在扩展最新的推理技术,以模拟病毒式现象的遗传力
类型(实现公正和有效的推论),并应用这些新方法以更好地估计
HIV-1中病毒负荷的遗传力。第二个目的旨在开发研究复杂的统计方法,
高维病毒表型,例如感染严重程度,无法用单一测度捕获 -
精神。这些表型由于其继承的复杂性而难以量化,这使严格的努力感到困惑
例如,确定异常有毒的病毒进化枝。系统发育因素分析可以识别和
高维表型的量化,它缩放到大数据集。我们提出了新的推论
解决这些可伸缩性问题并允许以前棘手的分析的技术。我们计划申请
这些新方法研究埃博拉病毒和LASSA热中的病毒模式,并确定异常强度
病毒株。此外,这些方法非常适合鉴定病毒Mu-之间的上皮相互作用
感兴趣的表型和表型,我们计划探索艾滋病毒,寨卡病毒和基孔肯雅的这些相互作用
病毒。第三个目的是开发特定于预测病毒结果的新的统计模型
病毒序列数据感染。为了适应这些模型所需的必要灵活性,我们
制定新的推理策略,这些策略都可以推广(即它们不依赖严格的假设
强大的预测性能将使研究人员或
临床医生使用病毒序列预测临床相关结果,这可以帮助治疗。我们
将使用上述埃博拉病毒和LASSA发烧数据评估这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel William Hassler其他文献
Gabriel William Hassler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
生物质燃烧区域复杂形貌含碳气溶胶偏振光学遥感模型研究
- 批准号:42305148
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
青藏高原不同区域冰川中微生物类脂物GDGTs的分布特征及其气候环境意义
- 批准号:42371155
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于机器学习的中国近岸区域鱼类砷累积与转化机制研究
- 批准号:42307361
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
南海周边生物质燃烧与区域气候及社会经济相互作用研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于物质代谢的区域生物天然气供应链系统集成方法及资源环境效应研究
- 批准号:52270184
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
- 批准号:
10655779 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别: