Electrocatalytic Cross-Coupling Reactions with Heterogeneous Single Atom Catalysts

多相单原子催化剂的电催化交叉偶联反应

基本信息

  • 批准号:
    EP/Y002628/1
  • 负责人:
  • 金额:
    $ 19.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Fine chemicals make up the largest portion of the global chemicals market with their revenues expected to grow to $220bn by 2024. Examples of important classes of fine chemicals, are pharmaceuticals, agrochemicals, flavours and fragrances and speciality materials (e.g., polymers). With the increasing attention on energy usage, environmental impact and safety, there is an urgent need to develop new, mild and efficient synthetic process for sustainable fine chemicals synthesis. There has been a remarkable renaissance of electrochemical catalysis, with researchers exploring how fine chemicals can be synthesised with using electrictricity as a reagent. These energy efficient, electricity-driven processes can be easily integrated with renewable energy sources and avoid the use of dangerous and toxic chemicals, which makes them a powerful green tool for chemical synthesis. However, at present, electrocatalytic methods typically utilise so called homogeneous catalytic systems, which requires transition metal catalysts, whereby all of the catalyst is fully dissolved in the reaction mixtures. These systems often suffer from high catalyst loadings due to their limited stability under the reaction conditions. Furthermore, the expensive homogeneous catalyst can only be used once due to the challenges associated with catalyst separation and recycling. With the rapid growth of nanoscience, heterogeneous catalysts have been exploited to tackle the aforementioned problems. Although they are stable and conveniently recyclable, their overall catalytic efficiencies are usually inferior to their homogeneous counterparts. In recent years, a new class of heterogeneous catalysts, namely single-atom catalysts (SACs), which are emerging as a new frontier in catalysis science. In this case, the active metal centre of the catalyst exists as isolated single atoms, which are stabilized by the support material., SACs can serve as a bridge between homogeneous and heterogeneous catalysts with the possibility of integrating the merits of both types of catalysts such as high activity, selectivity, stability and reusability. Indeed, many breakthroughs in clean energy conversion reactions (e.g., oxygen reduction, hydrogen evolution, CO2 reduction) using SACs has been reported recently. These have demonstrated their great potential in electrochemical applications, but electrocatalytic fine chemical synthesis using SACs remains unexplored. As the most frequently used class of reaction in pharmaceutical synthesis, the so called cross-coupling reactions were recognized in 2010 by the Nobel Prize in Chemistry. In this project, we will exploit the inherent properties of SACs to revolutionise fine chemical synthesis by creating completely new heterogeneous electrochemical cross-coupling reactions as proof-of-concept examples. Through newly forged collaborations with Prof. Yanqiang Huang from Dalian Institute of Chemical Physics (DICP, the birthplace of SACs concept), Prof. Karl Ryder (UoL) and MOF Technologies, novel nickel based SACs will be synthesized using metal organic frameworks (MOFs) as precursors, and the mechanisms of these SACs catalysed reactions will be studied using modern material characterization techniques This project is highly interdisciplinary and at the intersection of cutting-edge organic synthesis, electrochemistry, materials science and state-of-the-art heterogeneous catalysis. Success in the area will bring both economic and environmental benefits and enable the manufacture of fine chemicals, such as pharmaceuticals, to be prepared using more sustainable processes. The understanding of catalyst structure-performance relationships and reaction mechanisms will enable the design of new SACs systems, that can be exploited for a range of chemical reactions, broadening its impact.
精细化学品占全球化学品市场的最大份额,其收入预计到 2024 年将增长至 2200 亿美元。重要的精细化学品类别包括药品、农用化学品、香精香料以及特种材料(例如聚合物)。随着人们对能源使用、环境影响和安全性的日益关注,迫切需要开发新的、温和的、高效的合成工艺来实现可持续的精细化学品合成。随着研究人员探索如何使用电作为试剂合成精细化学品,电化学催化取得了显着的复兴。这些节能、电力驱动的工艺可以轻松地与可再生能源集成,并避免使用危险和有毒的化学品,这使它们成为化学合成的强大绿色工具。然而,目前,电催化方法通常利用所谓的均相催化系统,其需要过渡金属催化剂,由此所有催化剂完全溶解在反应混合物中。由于这些系统在反应条件下的稳定性有限,因此常常遭受高催化剂负载的困扰。此外,由于催化剂分离和回收方面的挑战,昂贵的均相催化剂只能使用一次。随着纳米科学的快速发展,多相催化剂已被用来解决上述问题。尽管它们稳定且可方便回收,但它们的总体催化效率通常不如同质同类产品。近年来,一类新型多相催化剂,即单原子催化剂(SAC),正在成为催化科学的新前沿。在这种情况下,催化剂的活性金属中心以孤立的单原子形式存在,并由载体材料稳定。SAC 可以作为均相和非均相催化剂之间的桥梁,并有可能整合两种类型催化剂的优点,例如具有高活性、选择性、稳定性和可重复使用性。事实上,最近报道了利用 SAC 在清洁能源转化反应(例如氧气还原、氢气析出、二氧化碳还原)方面取得的许多突破。这些已经证明了它们在电化学应用中的巨大潜力,但使用 SAC 的电催化精细化学合成仍未得到探索。作为药物合成中最常用的一类反应,所谓的交叉偶联反应于 2010 年获得诺贝尔化学奖。在这个项目中,我们将利用 SAC 的固有特性,通过创建全新的异质电化学交叉偶联反应作为概念验证示例,彻底改变精细化学合成。通过与大连化学物理研究所(DICP,SAC概念的发源地)黄彦强教授、Karl Ryder教授(伦敦大学)和MOF Technologies的新合作,将使用金属有机框架(MOF)合成新型镍基SAC作为前体,这些 SAC 催化反应的机制将使用现代材料表征技术进行研究。该项目是高度跨学科的,处于尖端有机合成、电化学、材料科学的交叉点和最先进的多相催化。该领域的成功将带来经济和环境效益,并使精细化学品(例如药品)的生产能够使用更可持续的工艺进行制备。对催化剂结构-性能关系和反应机制的理解将有助于设计新的 SAC 系统,该系统可用于一系列化学反应,扩大其影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qun Cao其他文献

Nanoscale investigation of surface wettability distribution on bubble nucleation with variable temperature boundary condition
变温边界条件下气泡成核表面润湿性分布的纳米尺度研究
Investigation of bubble nucleation on inhomogeneous wettability surfaces
  • DOI:
    10.1080/08927022.2023.2181018
  • 发表时间:
    2023-02-25
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhenyu Wang;Zheng Cui;Qun Cao;Wei Shao
  • 通讯作者:
    Wei Shao
Cationic palladium(II) complexes as catalysts for the oxidation of terminal olefins to methyl ketones using hydrogen peroxide.
阳离子钯 (II) 络合物作为使用过氧化氢将末端烯烃氧化成甲基酮的催化剂。
  • DOI:
    10.1039/c4gc02465f
  • 发表时间:
    2015-05-12
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Qun Cao;D. Bailie;Runzhong Fu;M. Muldoon
  • 通讯作者:
    M. Muldoon
  VOCs Emission Characteristics and LADR Strategies for an Chemical Industrial Park in Jiangxi,China  
Carbon and Oxygen-Doped Phosphorus Nitride (COPN) for Continuous Selective and Stable H2O2 Production
用于连续选择性和稳定生产 H2O2 的碳和氧掺杂氮化磷 (COPN)
  • DOI:
    10.1021/acscatal.3c03775
  • 发表时间:
    2023-10-27
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Zhikang Bao;Qun Cao;Yizhen Shao;Shijie Zhang;Xiaoge Peng;Yuan Li;Chenghang Jiang;Xing Zhong
  • 通讯作者:
    Xing Zhong

Qun Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
  • 批准号:
    82360199
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
冷应激诱导RNA结合蛋白CIRBP在三叉神经病理痛中的作用和机制研究
  • 批准号:
    82371217
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
  • 批准号:
    82373032
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于肠源性HDL3调控LPS介导Kupffer-肝细胞cross-talk探讨脾虚膏脂转输障碍的分子机制
  • 批准号:
    82374423
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
一个伤害性感受器特异性长链非编码RNA的新发现及其参与三叉神经痛的分子机制研究
  • 批准号:
    82371234
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Mechanisms of C-F and S-F Bond Activation and Cross-coupling with Bidentate N-heterocyclic Carbene Nickel Catalysts
RUI:双齿N-杂环卡宾镍催化剂的C-F和S-F键活化及交叉偶联机理
  • 批准号:
    2350537
  • 财政年份:
    2024
  • 资助金额:
    $ 19.56万
  • 项目类别:
    Standard Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    $ 19.56万
  • 项目类别:
    Continuing Grant
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 19.56万
  • 项目类别:
    Studentship
Data Analysis of Cross-Coupling Reactions Using Enhanced Mathematical Methods to Decipher Complexity
使用增强数学方法分析交叉偶联反应的复杂性
  • 批准号:
    2885384
  • 财政年份:
    2023
  • 资助金额:
    $ 19.56万
  • 项目类别:
    Studentship
A new Iron Age! Making Iron complexes fit for C-C cross-coupling catalysis.
新的铁器时代!
  • 批准号:
    DE230100978
  • 财政年份:
    2023
  • 资助金额:
    $ 19.56万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了