UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)

统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)

基本信息

  • 批准号:
    EP/Y001575/1
  • 负责人:
  • 金额:
    $ 21.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The ambitious decarbonisation energy targets of the UK and worldwide will lead to unprecedented levels of inverter-based resources (IBRs) (e.g. wind, solar, electric vehicles) into the power system. National Grid ESO, partner of the project, forecasts a threefold IBR increase from about 10GW in 2020 to approximately 30GW by 2028. This rapid transformation of our power system comes with new opportunities, as well as new operational and stability challenges. The power electronics (inverters) of IBRs allow for faster and much more programmable operation compared to the machines of conventional power plants, but they also behave very differently during disturbances (e.g. line faults, generator trip). This different dynamic response gives rise to a multitude of inverter-driven instabilities in the network, with National Grid ESO raising a red flag for such complications in distant wind farms in North Scotland by 2030 due to weak grid, and for the entire GB network with the rapid reduction of its system inertia. Not resolving these issues equals to limiting the IBR penetration into our network and failing our net-zero targets.These challenges relate primarily to the dynamic behavior of the inverters. Conventionally, IBRs have been operating in 'grid-following' mode (GFL), that is behaving like a current source in the network. Lately, 'grid-forming' (GFM) has emerged as an alternative that emulates voltage-source characteristics. However, recent findings show that while GFL fails at weak grid, GFM also fails at strong grid, hence neither technology is a silver bullet for all grids and conditions. As a compromise to this, system operators are currently looking into distributing GFL and GFM inverters across the network in the "right mix", which is really a makeshift measure and cannot address the issue fully.UNIFORM approaches this problem from an entirely new perspective. Instead of mixing individual current and voltage sources within the network, we will combine these two behaviors within the inverter itself. By unifying the GFL and GFM modes into a universal 'Composite V-I source', every single inverter can emulate a hybrid voltage/current response at a programmable ratio depending on the grid conditions. That essentially means a universal controller that (i) synchronizes robustly to any grid, and (ii) emulates an inverter output that ensures the best possible stability outcome. This will be the steppingstone in unlocking the true potential of IBRs and increase the stability margin of any IBR-driven network, thus paving the way for the envisioned 100%-IBR power system.A rare academia-industry partnership is formed to implement this idea. The University of Southampton will be leading the project, leveraging on the PI's specialization on inverter control, and closely working with the international partner NTUA (Prof Nikos Hatziargyriou), world-leading expert in grid stability. National Grid ESO will be sharing case studies and real-life experience from the GB network, while Smart Power Networks will be guiding the experimental validation phases towards industrial exploitation. An elaborate knowledge exchange and research visits plan will establish a strong partnership with unique and complementary skillsets that will innovate in the emerging area of 'inverter-driven power systems'. These tools and knowledge have the potential to not only facilitate meeting our energy targets, but also boost our position as a global leader in a field with tremendous industrial and commercial potential worldwide.
英国和全球雄心勃勃的脱碳能源目标将导致电力系统中基于逆变器的资源(IBR)(例如风能、太阳能、电动汽车)达到前所未有的水平。该项目的合作伙伴国家电网 ESO 预测,到 2028 年,IBR 装机容量将增加三倍,从 2020 年的约 10GW 增至约 30GW。我们电力系统的快速转型带来了新的机遇,也带来了新的运营和稳定性挑战。与传统发电厂的机器相比,IBR 的电力电子设备(逆变器)可以实现更快、更可编程的操作,但它们在出现干扰(例如线路故障、发电机跳闸)时的表现也非常不同。这种不同的动态响应导致网络中出现大量由逆变器驱动的不稳定性,国家电网 ESO 将对苏格兰北部偏远风电场由于电网薄弱而在 2030 年之前出现此类复杂情况发出危险信号,并且对整个英国网络而言其系统惯性迅速减小。不解决这些问题就等于限制 IBR 对我们网络的渗透并无法实现我们的净零目标。这些挑战主要与逆变器的动态行为有关。传统上,IBR 一直在“网格跟随”模式(GFL)下运行,其行为类似于网络中的电流源。最近,“网格形成”(GFM)已成为模拟电压源特性的替代方案。然而,最近的研究结果表明,虽然 GFL 在弱电网下失败,但 GFM 在强电网下也会失败,因此这两种技术都不是适用于所有电网和条件的灵丹妙药。作为对此的妥协,系统运营商目前正在考虑以“正确的组合”在整个网络中分配 GFL 和 GFM 逆变器,这实际上是一种权宜之计,无法完全解决问题。UNIFORM 从全新的角度解决了这个问题。我们不会在网络内混合单独的电流和电压源,而是将这两种行为结合在逆变器本身内。通过将 GFL 和 GFM 模式统一为通用“复合 V-I 源”,每个逆变器都可以根据电网条件以可编程比率模拟混合电压/电流响应。这本质上意味着通用控制器能够 (i) 与任何电网稳健同步,并且 (ii) 模拟逆变器输出,以确保最佳的稳定性结果。这将成为释放 IBR 真正潜力的基石,并提高任何 IBR 驱动网络的稳定性裕度,从而为设想的 100%-IBR 电力系统铺平道路。为实现这一想法,学术界与工业界建立了罕见的合作伙伴关系。南安普顿大学将利用 PI 在逆变器控制方面的专业知识来领导该项目,并与国际合作伙伴 NTUA(Nikos Hatziargyrou 教授)、世界领先的电网稳定性专家密切合作。国家电网 ESO 将分享英国网络的案例研究和实际经验,而智能电力网络将指导工业开发的实验验证阶段。精心设计的知识交流和研究访问计划将与独特且互补的技能建立牢固的合作伙伴关系,从而在“逆变器驱动电力系统”这一新兴领域进行创新。这些工具和知识不仅有可能有助于实现我们的能源目标,还可以提升我们作为全球工业和商业潜力领域的全球领导者的地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efstratios Batzelis其他文献

Efstratios Batzelis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自由曲面空间网格结构形态与鲁棒性一体化设计理论及方法研究
  • 批准号:
    52368018
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
Integration of electric vehicles into the grid: A net-zero carbon future
电动汽车并入电网:净零碳的未来
  • 批准号:
    IM240100042
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Mid-Career Industry Fellowships
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
  • 批准号:
    2422573
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Standard Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 21.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了