Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
基本信息
- 批准号:2330195
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop a generalized distributed framework for solving large-scale power grid problems that are both fast and robust in most practical settings. The project will bring transformative change in the future grid operation and planning that depend on tractable large-scale time-domain and steady-state simulations and optimizations for rapid electrification and decarbonization. The project will bring about this transformation by advancing the state-of-the-art in nonlinear programming, physics-inspired graph-partitioning, and combinatorial optimization with submodular type objectives. The intellectual merits of the project include leveraging specialized bordered-block-diagonal structure of grid problems for computational tractability and physics-rooted equivalent-circuit representation of grid models for numerical stability and algorithm performance. The broader impacts of the project include accelerating technologies necessary for the transition to zero-carbon power grids, enabling citizen science efforts, and promoting undergraduate research and education. Zero-carbon electric grid operation and design will require solutions to large computations. These will range from system-wide electromagnetic transient simulations due to the growing penetration of inverter-based resources to large multi-period optimizations due to increasing resource uncertainty. State-of-the-art general methods cannot solve these large simulations and optimizations robustly and efficiently in practical settings due to their sheer size and complexity. We will leverage the underlying specialized properties stemming from the structure and physical behavior of grid problems to address these gaps through three project thrusts. Thrust 1 will build a scalable circuit-theoretic generalized framework to solve bordered-block-diagonal decomposable large nonlinear simulations (NLS) and optimizations (NLPs). Thrust 1 will harness equivalent circuit representations of the underlying problems to achieve project goals. Thrust 2 will introduce a novel metric for analytically quantifying the notion of strength of coupling between various subproblems in a decomposed regime, and Thrust 3 will identify optimal decomposition strategies. The proposed thrusts, while focused on power grids, can revolutionize the solution methodology of large-scale problems in many other domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 项目旨在开发一个通用分布式框架,用于解决在大多数实际环境中既快速又稳健的大规模电网问题。该项目将为未来的电网运营和规划带来革命性的变化,这些变化依赖于易于处理的大规模时域和稳态模拟以及快速电气化和脱碳的优化。该项目将通过推进非线性规划、受物理启发的图分区以及子模类型目标的组合优化方面的最先进技术来实现这一转变。该项目的智力优点包括利用网格问题的专门有界块对角结构来实现计算易处理性,以及网格模型的基于物理的等效电路表示来实现数值稳定性和算法性能。该项目的更广泛影响包括加速向零碳电网过渡所需的技术、促进公民科学努力以及促进本科生研究和教育。零碳电网的运营和设计将需要大型计算的解决方案。这些范围包括由于基于逆变器的资源的不断渗透而进行的全系统电磁瞬态仿真,以及由于资源不确定性的增加而进行的大型多周期优化。由于其庞大的规模和复杂性,最先进的通用方法无法在实际环境中稳健有效地解决这些大型模拟和优化问题。我们将利用源自网格问题的结构和物理行为的潜在专业属性,通过三个项目主旨来解决这些差距。 Thrust 1 将构建一个可扩展的电路理论广义框架,以解决有边界块对角线可分解大型非线性仿真 (NLS) 和优化 (NLP)。主旨 1 将利用潜在问题的等效电路表示来实现项目目标。 Thrust 2 将引入一种新颖的度量标准,用于分析量化分解体系中各个子问题之间的耦合强度概念,而 Thrust 3 将确定最佳分解策略。拟议的重点虽然集中于电网,但可以彻底改变许多其他领域的大规模问题的解决方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amritanshu Pandey其他文献
Robust Convergence of Power Flow Using TX Stepping Method with Equivalent Circuit Formulation
使用 TX 步进方法和等效电路公式实现功率流的鲁棒收敛
- DOI:
10.23919/pscc.2018.8442680 - 发表时间:
2017-11-04 - 期刊:
- 影响因子:0
- 作者:
Amritanshu Pandey;Marko Jereminov;Martin R. Wagner;G. Hug;L. Pileggi - 通讯作者:
L. Pileggi
Three-phase infeasibility analysis for distribution grid studies
配电网研究的三相不可行性分析
- DOI:
10.1016/j.epsr.2022.108486 - 发表时间:
2021-10-21 - 期刊:
- 影响因子:3.9
- 作者:
E. Foster;Amritanshu Pandey;L. Pileggi - 通讯作者:
L. Pileggi
Continuous Switch Model and Heuristics for Mixed-Integer Problems in Power Systems
电力系统混合整数问题的连续切换模型和启发式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Aayushya Agarwal;Amritanshu Pandey;Marko Jereminov;Larry Pillegi - 通讯作者:
Larry Pillegi
Towards Practical Physics-Informed ML Design and Evaluation for Power Grid
迈向实用的基于物理的电网机器学习设计和评估
- DOI:
10.48550/arxiv.2205.03673 - 发表时间:
2022-05-07 - 期刊:
- 影响因子:0
- 作者:
Shimiao Li;Amritanshu Pandey;L. Pileggi - 通讯作者:
L. Pileggi
: Sensor Placement and Anomaly Detection in the Electrical Grid
:电网中的传感器放置和异常检测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bryan Hooi;D. Eswaran;H. Song;Amritanshu Pandey;Marko Jereminov;L. Pileggi;Christos Faloutsos - 通讯作者:
Christos Faloutsos
Amritanshu Pandey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
- 批准号:62306062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
- 批准号:62303488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
- 批准号:62302202
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant