Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications

合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造

基本信息

  • 批准号:
    2326714
  • 负责人:
  • 金额:
    $ 31.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This grant supports research that contributes knowledge to the formation of metal-organic framework (MOF) thin films, a class of porous materials that has the power to transform separations science and its applications. MOFs are useful for a wide range of applications, from charge and ion transport, separations, gas- and solution-based sensing, catalysis, environmental remediation, and more. The formation of large-area separation membranes is especially significant for a range of gas separations, such as for CO2 removal from air or flue gas. Small-scale (1 cm2) MOF-based membranes have shown utility for a range of high-value separation applications. However, a lack of fundamental knowledge exists to create easily scalable, advanced manufacturing of large areas of MOF membranes that still preserve the lab-scale performance. This award supports a combination of x-ray probes, modeling, and experimental techniques to fully understand how MOF thin films form. This fundamental knowledge is used to develop a continuous, roll-to-roll coating technique that can create large-area MOF thin films with outstanding separation performance. Students are engaged to contribute to the development of new MOF crystallization theories and modeling tools that can be used in research as well as industrial environments. The project endeavors to train students, particularly from underrepresented minority backgrounds, to become successful chemical engineers and material scientists. Large area, scalable thin-film MOF formation required for low-resistance, low-cost separations is difficult to achieve due to limited know-how on controlling solution chemistry for precision synthesis of MOF thin films using a scalable solution coating process. This project uses an integrated approach involving in-situ experimentation, modeling, and separation measurements to obtain fundamental manufacturing research on MOF thin film formation using scalable coating techniques, such as flow coating, or the recently developed percolation-assisted coating (PAC) method. Rapid timescale, in-situ x-ray scattering measurements coupled with microkinetic modeling are used to understand thin film MOF nucleation and growth mechanisms under evaporative/pervaporation conditions. The microkinetic model simulates billions of oligomerization reactions to predict nucleation rate, growth rate, and size distribution. The microkinetic model helps in selecting a range of operating conditions for high throughput (HT) PAC experiments for the optimization of MOF thin film structure and maximizing performance. By connecting it to a gas chromatograph, the HT setup is also used to obtain gas separation factors for CO2/N2 and CO2/CH4 mixtures. The ensuing process-structure-property relationships guide the scaling of the PAC method to grow 50 cm2 MOF films, followed by a model-based design of a roll-to-roll coating system for large-scale manufacturing of MOF films.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持为金属有机框架 (MOF) 薄膜的形成贡献知识的研究,金属有机框架 (MOF) 薄膜是一类多孔材料,能够改变分离科学及其应用。 MOF 可用于广泛的应用,从电荷和离子传输、分离、基于气体和溶液的传感、催化、环境修复等。大面积分离膜的形成对于一系列气体分离尤其重要,例如从空气或烟道气中去除二氧化碳。小规模 (1 cm2) MOF 膜已在一系列高价值分离应用中显示出实用性。然而,缺乏基础知识来创建易于扩展的大面积 MOF 膜的先进制造,同时仍保持实验室规模的性能。该奖项支持 X 射线探针、建模和实验技术的结合,以充分了解 MOF 薄膜的形成方式。这些基础知识用于开发连续的卷对卷涂层技术,可以创建具有出色分离性能的大面积 MOF 薄膜。学生致力于为新的 MOF 结晶理论和建模工具的开发做出贡献,这些理论和建模工具可用于研究和工业环境。该项目致力于培训学生,特别是来自少数族裔背景的学生,成为成功的化学工程师和材料科学家。由于控制溶液化学以使用可扩展溶液涂覆工艺精确合成 MOF 薄膜的技术有限,低电阻、低成本分离所需的大面积、可扩展薄膜 MOF 形成很难实现。该项目采用涉及原位实验、建模和分离测量的综合方法,利用可扩展的涂层技术(例如流涂或最近开发的渗滤辅助涂层(PAC)方法)获得 MOF 薄膜形成的基础制造研究。快速时间尺度、原位 X 射线散射测量与微动力学模型相结合,用于了解蒸发/渗透蒸发条件下薄膜 MOF 的成核和生长机制。微动力学模型模拟数十亿次低聚反应,以预测成核速率、生长速率和尺寸分布。微动力学模型有助于选择高通量 (HT) PAC 实验的一系列操作条件,以优化 MOF 薄膜结构并最大化性能。通过将其连接到气相色谱仪,HT 设置还可用于获取 CO2/N2 和 CO2/CH4 混合物的气体分离系数。随后的工艺-结构-性能关系指导 PAC 方法的扩展,以生长 50 cm2 MOF 薄膜,然后是用于大规模制造 MOF 薄膜的卷对卷涂层系统的基于模型的设计。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meenesh Singh其他文献

Chemical Engineering Research and Design
化学工程研究与设计
  • DOI:
    10.1002/cjce.5450770323
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pascal Francis;ANTECASCurrent;Contents;Jerry Heng;B. Ladewig;David Edwards;Stephen Richardson;Elisabetta Brunazzi;Tony Cai;Eva Sorensen;Joelle Aubin;Giorgio Besagni;F. Ein‐Mozaffari;N. Eshtiaghi;Xuhong Guo;Yixiang Liao;Mark Simmons;Rufat Abiev;F. Azizi;Amol Kulkarni;Jason Stafford;R. Zevenhoven;Críspulo Gallegos;E. Menya;Meenesh Singh;Massimo Poletto;Alvaro Ramirez Gomez;Richard A. Williams;Pui Lai;Rachel Ee;R. Lakerveld;Aniruddha Majumder;N. Nere;Michael Georgiadis;Patricia Hoch;Tony Kiss;Andrzej Kraslawski;Pei Liu;Antonio del;R. Chanona;Artur M. Schweidtmann;Nilay Shah;N. Aishah;Saidina Amin;K. Hinrichsen;Anastasia Macario;Theirry Meyer;J. Morchain;E. Tronconi;Diana Azevedo;Tai;Xianshe Feng;Woei Jye Lau;Asim Khan;H. Knuutila;J. Segovia‐Hernández;Aiqin Wang;Yan Wang
  • 通讯作者:
    Yan Wang

Meenesh Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 31.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了