Micron-scale, chemically-controlled, auto-injection systems for at-home drug delivery

用于家庭给药的微米级化学控制自动注射系统

基本信息

  • 批准号:
    EP/X04128X/1
  • 负责人:
  • 金额:
    $ 143.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Traditional pharmaceutical drugs are small molecules that treat the symptoms of a disease. Biopharmaceuticals are larger molecules, for example, peptides, proteins and antibodies, which target the underlying mechanisms and pathways of a disease that are not accessible with traditional drugs. Recently, there have been rapid and revolutionary developments in this field of biotechnology. Therapeutic peptides, proteins and antibodies are expected to be used extensively in the coming years as vaccines and as treatments for cancer, high blood pressure, pain, blood clots and many other illnesses. However, one of the major challenges to successful clinical use of these so-called "biotech" molecules is their efficient delivery to the site of action. The body breaks these medicines down when they are swallowed and they are generally not well-absorbed into the blood. As a result, they have to be given frequently by injection, which is painful and means that these drugs are usually only administered in hospital. Long-acting formulations of small molecules, increasingly to the fore in treating HIV and TB, must also be injected. The COVID-19 pandemic has greatly increased the need for self-administration of injectables at home, away from healthcare settings, where transmission can have dire consequences and healthcare systems are backlogged. Complexities of storage, distribution and administration, needle phobia and the difficulty of domestic disposal of potentially-contaminated sharps all contribute to an urgent need for alternative delivery modes for injectable drugs/vaccines. We have developed a novel type of transdermal patch that by-passes the skin's barrier layer, which is called the stratum corneum. The patch surface has many tiny needles that pierce the stratum corneum without causing any pain - The sensation is said to feel like a cat's tongue. These needles create tiny holes in the stratum corneum, through which drugs/vaccines can enter the body from a unique reservoir system powered by simple and safe chemistry. Our unique technology could potentially revolutionise the delivery of peptides and proteins, antibodies, vaccines, as well as that of long-acting small molecules that cannot currently be delivered across the skin. In the UK, the NHS stands to benefit from at-home dosing of medicines/vaccines that normally require a healthcare worker's time and expertise. Ultimately, health-related-quality-of-life will be enhanced through improved disease control by empowered patients. At-home treatment, keeping people away from healthcare settings, will also help reduce spread of COVID-19 and other respiratory pathogens (e.g. influenza, Strep A) to vulnerable in-patients and healthcare workers whilst also, importantly, allowing NHS staff to focus on overcoming the backlog in normal diagnosis and treatment of non-COVID disease.We have attracted considerable interest and funding from industry to develop our first and second generation microneedle technologies for a range of applications. However, to facilitate the translational development of the novel third generation technology to be investigated here and maximise value to the UK, it is essential to develop methods to fully understand these new high-dose microneedles. We will ensure that their efficacy is guaranteed by employing advanced computer-guided device design and rationalisation, coupled with extensive laboratory investigation. Ultimately, commercialisation of the technology will be the primary route by which UK industry, the NHS and patients will derive benefits.
传统药物是治疗疾病症状的小分子。生物制药是较大的分子,例如肽、蛋白质和抗体,它们针对传统药物无法触及的疾病的潜在机制和途径。近年来,生物技术这一领域取得了快速且革命性的发展。治疗性肽、蛋白质和抗体预计将在未来几年广泛用于疫苗以及癌症、高血压、疼痛、血栓和许多其他疾病的治疗。然而,成功临床使用这些所谓的“生物技术”分子的主要挑战之一是它们有效递送到作用位点。当这些药物被吞咽时,身体会分解它们,并且它们通常不能很好地吸收到血液中。因此,必须经常通过注射给药,这很痛苦,并且意味着这些药物通常只能在医院施用。长效小分子制剂在治疗艾滋病毒和结核病方面日益受到关注,也必须进行注射。 COVID-19 大流行大大增加了在家中自行注射注射剂的需求,远离医疗机构,因为在医疗机构中传播可能会造成可怕的后果,而且医疗系统也出现积压。储存、分配和管理的复杂性、针头恐惧症以及国内处置可能受污染的锐器的困难都导致迫切需要注射药物/疫苗的替代输送方式。我们开发了一种新型透皮贴剂,可以绕过皮肤的屏障层(称为角质层)。贴片表面有许多细小的针,可以刺穿角质层,但不会引起任何疼痛——据说这种感觉就像猫的舌头一样。这些针头在角质层上形成小孔,药物/疫苗可以通过这些小孔从由简单安全的化学物质驱动的独特储存系统进入体内。我们独特的技术可能会彻底改变肽和蛋白质、抗体、疫苗以及目前无法穿过皮肤输送的长效小分子的输送。在英国,NHS 将从在家服用药物/疫苗中受益,这通常需要医护人员的时间和专业知识。最终,通过赋予患者权力改善疾病控制,将提高与健康相关的生活质量。家庭治疗使人们远离医疗机构,也将有助于减少 COVID-19 和其他呼吸道病原体(例如流感、甲型链球菌)向弱势住院患者和医护人员的传播,同时重要的是,还可以让 NHS 工作人员集中精力克服非新冠疾病正常诊断和治疗中的积压问题。我们吸引了业界的极大兴趣和资金来开发我们的第一代和第二代微针技术,用于一系列应用。然而,为了促进此处研究的新型第三代技术的转化开发并最大限度地提高英国的价值,有必要开发方法来充分了解这些新型高剂量微针。我们将通过采用先进的计算机引导设备设计和合理化以及广泛的实验室调查来确保其功效得到保证。最终,该技术的商业化将成为英国工业界、NHS 和患​​者受益的主要途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Donnelly其他文献

Introduction to microneedles
  • DOI:
    10.1039/d3bm90074f
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Ryan Donnelly;Ester Caffarel-Salvador;Harvinder Gill;Hyungil Jung
  • 通讯作者:
    Hyungil Jung
Introduction to microneedles
  • DOI:
    10.1039/d3tb90166a
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Ryan Donnelly;Ester Caffarel-Salvador;Harvinder Gill;Hyungil Jung
  • 通讯作者:
    Hyungil Jung
Safety Outcomes of Direct Discharge Home From ICUs: An Updated Systematic Review and Meta-Analysis (Direct From ICU Sent Home Study)*
从 ICU 直接出院回家的安全结果:更新的系统评价和荟萃分析(直接从 ICU 出院回家研究)*
  • DOI:
    10.1097/ccm.0000000000005720
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    V. Lau;Ryan Donnelly;S. Parvez;Jivanjot Gill;S. Bagshaw;I. Ball;J. Basmaji;D. Cook;K. Fiest;R. Fowler;Jonathan F. Mailman;Claudio M. Martin;B. Rochwerg;D. Scales;H. Stelfox;Alla E. Iansavichene;E. Sy
  • 通讯作者:
    E. Sy
Dynamic power management for microprocessors: a case study
微处理器的动态电源管理:案例研究
Understanding the Two-Dimensional Mixing Behavior of 1-Naphthalenethiol and Octanethiol
了解 1-萘硫醇和辛硫醇的二维混合行为

Ryan Donnelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Donnelly', 18)}}的其他基金

Optimisation of microneedle insertion and understanding the implications of repeat application as tools to support translation
优化微针插入并了解重复应用作为支持翻译工具的影响
  • 批准号:
    EP/V047221/1
  • 财政年份:
    2021
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Nanoengineered microneedle arrays for enhanced delivery of long-acting HIV medicines
纳米工程微针阵列可增强长效艾滋病毒药物的输送
  • 批准号:
    EP/S028919/1
  • 财政年份:
    2019
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Nanoengineered microneedle arrays for enhanced plasmonic photothermal therapy of basal cell carcinoma.
纳米工程微针阵列用于增强基底细胞癌的等离子体光热疗法。
  • 批准号:
    EP/P034063/1
  • 财政年份:
    2017
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Manufacture and applicator technologies for commercialisation of polymeric microneedle arrays
聚合物微针阵列商业化的制造和施用器技术
  • 批准号:
    BB/K020234/1
  • 财政年份:
    2013
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Microneedle-mediated enhanced Raman therapeutic drug monitoring
微针介导的增强拉曼治疗药物监测
  • 批准号:
    EP/H021647/1
  • 财政年份:
    2010
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant
Transdermal delivery of macromolecules mediated by microneedle arrays
微针阵列介导的大分子透皮递送
  • 批准号:
    BB/E020534/1
  • 财政年份:
    2007
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Research Grant

相似国自然基金

超大规模MIMO系统信道状态信息获取与无线传输理论研究
  • 批准号:
    62371180
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
考虑运营扰动的大规模地铁网络个体乘客实时出行过程预测
  • 批准号:
    52372332
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型电力系统中可再生能源大规模利用的建模及激励机制研究
  • 批准号:
    72304114
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Characterizing chemical threat agent exposures using a lung-on-a-chip platform and multi-omic analysis of common pathophysiological mechanisms
使用芯片肺平台和常见病理生理机制的多组学分析来表征化学威胁剂暴露
  • 批准号:
    10708553
  • 财政年份:
    2023
  • 资助金额:
    $ 143.03万
  • 项目类别:
Endogenic School and Community Innovation in Rural Korea ;Focusing on the Continuation Factors of Small-Scale School Revitalization Cases
韩国农村内生学校与社区创新;关注小规模学校振兴案例的延续因素
  • 批准号:
    22K02333
  • 财政年份:
    2022
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the impact of sustainable agricultural systems on ecosystem services: validation by large-scale field experiments
阐明可持续农业系统对生态系统服务的影响:大规模田间实验验证
  • 批准号:
    21K12325
  • 财政年份:
    2021
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chemically Tuned Silicon Nitride Nanopores for Nucleic Acid Sequencing
用于核酸测序的化学调谐氮化硅纳米孔
  • 批准号:
    10162635
  • 财政年份:
    2020
  • 资助金额:
    $ 143.03万
  • 项目类别:
Entropy-based Hierarchical Visualization to Support Cross-Scale Explanation of Structural Change
基于熵的分层可视化支持结构变化的跨尺度解释
  • 批准号:
    20K20482
  • 财政年份:
    2020
  • 资助金额:
    $ 143.03万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了