Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
基本信息
- 批准号:EP/Y006712/1
- 负责人:
- 金额:$ 116.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Whenever something moves or changes, it can be modelled mathematically using a differential equation. Solving a differential equation means determining the state of the system (the thing which is moving) at any time in the future from its current state. For many differential equations this is impossible: the systems they describe exhibit complicated behaviour (picture waves on a stormy ocean - their long-term movements are very hard to predict) and it is impossible to write a formula describing future states. Integrable systems are the exceptions: they are differential equations that can be solved and represent dynamics that look orderly (picture a wave on a canal produced by a boat that has suddenly stopped - it keeps traveling forward in a predictable way). The orderly behaviour of an integrable system is caused by some hidden mathematical structure of the differential equation. This hidden structure can take many different forms. Some integrable systems possess several forms of hidden structures, but no form applies to all integrable systems. There is no universal theory of the mathematics of integrable systems.This Fellowship explores a recent development in integrable systems, the central idea of which comes from physics. Almost every physical theory can be described by the fact that something is minimised. Such a description is called a variational principle. In optics, for example, a ray of light will always take the fastest possible path. In other cases, the quantity that is minimised may be less intuitive, but a variational principle always provides powerful mathematical tools.The theory of "Lagrangian multiforms" uses variational principles to capture the hidden structures of integrable systems. It is a recent development, the advantages of which are only starting to come to light. One advantage is that Lagrangian multiforms apply to discrete systems in the same way as to continuous systems. This provides insight into relations between integrable systems of both types. Here, "discrete" means that space and time do not form a continuum, but work in fixed steps (like digital video consists of a finite number of pixels and a finite number of frames per second).This Fellowship investigates the benefits of Lagrangian multiforms in three main areas:1. Relations between integrable systems of different types and their classification. One example of such relations is found in the Lagrangian multiform theory of semi-discrete systems (which involve both discrete and continuous variables). Some semi-discrete Lagrangian multiforms exhibit surprising connections to fully continuous integrable systems. This is only one of several contexts in which Lagrangian multiforms provide relations between equations of different types. This Fellowship will deliver a broad investigation of this phenomenon, employ it to transfer insights between equations of different types, and classify equations of interest.2. Geometry. In the theory of Lagrangian multiforms, parameters describing symmetries of the system are treated in the same way as the time-variable. Together they form "multi-time". This Fellowship will study geometric aspects of Lagrangian multiform theory. Of particular interest are geometric structures within multi-time, related to special solutions of the integrable system, as well as the geometry of multi-time itself. This will allow us to capture a larger class of differential equations and transfer the insights of Lagrangian multiforms beyond the realm of integrable systems.3. Applications. This Fellowship will investigate applications of Lagrangian multiforms in computational science and in fundamental physics. Variational principles have many applications in both these areas, but not all are fully understood from a rigorous mathematical perspective. This research will employ Lagrangian multiforms as well as other recent developments to secure the mathematical foundation of these applications
每当物体移动或变化时,都可以使用微分方程对其进行数学建模。求解微分方程意味着从当前状态确定系统(正在运动的物体)在未来任何时间的状态。对于许多微分方程来说,这是不可能的:它们描述的系统表现出复杂的行为(就像波涛汹涌的海洋上的波浪 - 它们的长期运动很难预测),并且不可能写出描述未来状态的公式。可积系统是例外:它们是可以求解的微分方程,并且表示看起来有序的动力学(想象一下运河上由突然停止的船产生的波浪 - 它以可预测的方式继续前进)。可积系统的有序行为是由微分方程的某些隐藏数学结构引起的。这种隐藏的结构可以采取多种不同的形式。一些可积系统具有多种形式的隐藏结构,但没有一种形式适用于所有可积系统。可积系统的数学没有通用的理论。本奖学金探讨了可积系统的最新发展,其中心思想来自物理学。几乎所有物理理论都可以用某些东西被最小化的事实来描述。这种描述称为变分原理。例如,在光学中,光线总是会采取尽可能最快的路径。在其他情况下,最小化的数量可能不太直观,但变分原理总是提供强大的数学工具。“拉格朗日多重形式”理论使用变分原理来捕获可积系统的隐藏结构。这是最近的发展,其优点才刚刚开始显现。优点之一是拉格朗日多重形式适用于离散系统,其方式与适用于连续系统相同。这提供了对两种类型的可积系统之间关系的深入了解。这里,“离散”意味着空间和时间不形成连续体,而是以固定的步骤工作(就像数字视频由有限数量的像素和每秒有限数量的帧组成)。该奖学金研究了拉格朗日多重形式的好处主要体现在三个方面: 1.不同类型的可积系统之间的关系及其分类。这种关系的一个例子可以在半离散系统的拉格朗日多重形式理论(涉及离散变量和连续变量)中找到。一些半离散拉格朗日多重形式与完全连续可积系统表现出令人惊讶的联系。这只是拉格朗日多重形式提供不同类型方程之间关系的几种情况之一。该奖学金将对这一现象进行广泛的研究,利用它在不同类型的方程之间传递见解,并对感兴趣的方程进行分类。2.几何学。在拉格朗日多重形式理论中,描述系统对称性的参数与时变量的处理方式相同。它们一起形成“多重时间”。该奖学金将研究拉格朗日多形式理论的几何方面。特别令人感兴趣的是多重时间中的几何结构,与可积系统的特殊解相关,以及多重时间本身的几何结构。这将使我们能够捕获更大类的微分方程,并将拉格朗日多重形式的见解转移到可积系统领域之外。3.应用。该奖学金将研究拉格朗日多重形式在计算科学和基础物理学中的应用。变分原理在这两个领域都有很多应用,但并不是所有的原理都能从严格的数学角度得到充分理解。这项研究将采用拉格朗日多重形式以及其他最新进展来确保这些应用的数学基础
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Products Review
- DOI:
10.1177/216507996201000701 - 发表时间:
1962-07 - 期刊:
- 影响因子:2.6
- 作者:
- 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
- DOI:
10.1016/j.techsoc.2023.102253 - 发表时间:
2023-04 - 期刊:
- 影响因子:9.2
- 作者:
- 通讯作者:
Digitization
- DOI:
10.1017/9781316987506.024 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
References
- DOI:
10.1002/9781119681069.refs - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Putrescine Dihydrochloride
- DOI:
10.15227/orgsyn.036.0069 - 发表时间:
1956-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 116.2万 - 项目类别:
Studentship
相似国自然基金
由黎曼度量与多种形式构成的Finsler度量的几何性质
- 批准号:10801080
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Demonstration of multiforms of insect cytokine receptors
多种形式的昆虫细胞因子受体的演示
- 批准号:
14340261 - 财政年份:2002
- 资助金额:
$ 116.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Steroid receptors-multiforms and their significance on brain differentiation
多种形式的类固醇受体及其对大脑分化的意义
- 批准号:
07458257 - 财政年份:1995
- 资助金额:
$ 116.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)