Quantum GaN-O-Photonics
量子 GaN-O-光子学
基本信息
- 批准号:EP/X040526/1
- 负责人:
- 金额:$ 84.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Technological advances have led to the availability of electronic devices like laptops, mobile devices and global positioning systems. In order to increase performance, modern technology has followed the path of miniaturising the components to reduce the overall size of commercial devices. Following this trend, we have now reached the point where matter can be controlled at the smallest scale: the single atom. It is in this new realm of physics that unconventional effects take place: when we deal with structures composed of just a few atoms or when we manipulate single electronic charges, the physics follows rules described by quantum mechanics. A completely new range of effects take place and devices with novel functionalities can be created: the quantum information revolution seems to be within reach.A very exciting research field focuses on the study of nanostructures, entities whose dimensions are of the order of 0.000000001m. Such small structures can be used for controlling single particles of light: single photons. Conventional light sources emit a large number of photons in a wide angular range and are mainly used for lighting and imaging. The ability to control light at the single-photon level is technologically challenging but tremendously interesting. If we can store information encoded on single photons, we can transfer it at the speed of light with a guaranteed secure communication. Single-photon emitters also find applications in imaging and medical sensing. Unfortunately, many single-photon sources operate at very low temperatures, which require the use of liquid helium, which is expensive and inconvenient for real-world applications. A material called Gallium Nitride (GaN) offers opportunities to overcome these limitations. GaN is a semiconductor crystal, and defects in that crystal can act as single-photon emitters, as can indium gallium nitride (InGaN) nanostructures embedded in a GaN matrix. Such nanostructures can emit single photons at room temperature, across a very wide range of wavelengths. However, incorporating these emitters into practical devices is very challenging. They tend to form at random locations in the crystal, which makes it hard to ensure that a device contains an optimally-positioned single emitter and that the light is emitted in the desired direction with high efficiency, as required for applications.In this project, we will develop technologies which allow us to control where an emitter forms, and integrate those site-controlled emitters with structures which extract the light from the device efficiently and channel it in a desired direction. We will create devices where the light extraction structures are integrated with the electrical injection of charge carriers into the emitter. That means that we will be able to use an applied voltage to either drive the single-photon emission or to alter the wavelength (or colour) of the emitted photon.The approach we will take to improving light extraction uses technologies that are easily incorporated into a standard manufacturing routine. We will put mirror-like structures underneath the single-photon emitters; above them, on the crystal surface, we will place tiny rings of metal, which can act like a lens, directing the light into the application system. In addition to being relatively easy to manufacture, relative to other possible technologies, this approach has additional advantages: it avoids etching the GaN crystal, which can damage device performance, and it also places less stringent requirements on achieving a very specific wavelength from the single-photon emitter. The metallic ring also doubles up as a contact for electrical injection. Overall, this provides a scalable, robust route to creating a new quantum technology - which addresses UK government priorities for advanced materials and manufacturing, and represents a crucial step forward in the implementation of quantum emitters in real-life devices.
技术进步导致了笔记本电脑,移动设备和全球定位系统等电子设备的可用性。为了提高性能,现代技术遵循了小型化组件的道路,以减少商业设备的整体规模。遵循这种趋势,我们现在已经达到了可以在最小规模控制的物质的地步:单个原子。正是在这个新的物理领域中发生了非常规效应:当我们处理仅由几个原子组成的结构或操纵单个电子电荷时,物理学遵循量子力学描述的规则。发生了一个全新的效果范围,可以创建具有新功能的设备:量子信息革命似乎已触及。一个非常令人兴奋的研究领域侧重于研究纳米结构的研究,该纳米结构的尺寸为0.00000000001m。这样的小结构可用于控制光的单个颗粒:单光子。常规的光源在宽角度范围内散发出大量光子,主要用于照明和成像。在单光子水平上控制光的能力在技术上具有挑战性,但非常有趣。如果我们可以存储在单个光子上编码的信息,则可以以确保安全的通信以光速传输。单光子发射器还可以在成像和医学传感中找到应用。不幸的是,许多单光子源在非常低的温度下运行,这需要使用液体氦气,这对于现实世界应用来说是昂贵且不便的。一种称为氮化炮(GAN)的材料提供了克服这些限制的机会。 GAN是一个半导体晶体,该晶体的缺陷可以充当单光子发射器,嵌入在GAN基质中的氮化剂(INGAN)纳米结构也可以充当单光子发射器。这样的纳米结构可以在室温下散发出非常广泛的波长的单个光子。但是,将这些发射器纳入实际设备非常具有挑战性。它们倾向于在晶体中的随机位置形成,这使得设备包含最佳位置的单个单个单个单个单一的发射器,并且根据应用所需的需要,将光线发射到所需的方向上。在此项目中,我们将开发技术,使我们能够控制这些emitter形式,并将其集成到该设备上的启动器中,从而使该设备的启发效率有效,并有效地将其集成了灯光,并有效地将其集成了效率,并有效地将其集成了效率。我们将创建设备,使光萃取结构与电气注入电荷载体集成到发射机中。这意味着我们将能够使用施加的电压来驱动单光子发射或更改发射光子的波长(或颜色)。我们将采取的方法改善光萃取使用易于纳入标准制造程序的技术。我们将在单光子发射器下方放置镜子状结构。在它们上方,在晶体表面上,我们将放置微小的金属环,可以像镜头一样,将光引导到应用系统中。除了相对于其他可能的技术相对易于制造,这种方法还具有其他优势:它可以避免蚀刻gan晶体,从而损害设备的性能,并且在从单光子发射器中实现非常特定的波长方面也没有较少严格的要求。金属环还可以作为电气注入的接触加倍。总体而言,这为创建新的量子技术提供了可扩展,可靠的途径 - 该技术旨在解决英国政府的高级材料和制造业的重点,这代表了在现实生活中实施量子发射器的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Luca Sapienza的其他基金
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
- 批准号:EP/V049011/2EP/V049011/2
- 财政年份:2023
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Research GrantResearch Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
- 批准号:EP/V049011/1EP/V049011/1
- 财政年份:2022
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Research GrantResearch Grant
An Atomic Force Microscopy study of buried InAs/GaAs quantum-dot single-photon sources
掩埋 InAs/GaAs 量子点单光子源的原子力显微镜研究
- 批准号:EP/P001343/1EP/P001343/1
- 财政年份:2016
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Research GrantResearch Grant
相似国自然基金
GaN基电泵浦激光器结构微米线生长与器件研制
- 批准号:62374062
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
甘氨脱氧胆酸通过FXR-FABP6促进雄激素转化代谢而改善PCOS的分子机制研究
- 批准号:82371643
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆汁酸-FXR反馈环路探究草甘膦致肝脏脂代谢紊乱的机制
- 批准号:42307547
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丝氨酸蛋白酶PR3调控肾足细胞损伤介导糖尿病肾脏病的作用及苓桂术甘汤效应机制研究
- 批准号:82374171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GaN基WGM光学微腔的外延剥离及其垂直注入电泵浦激光器的研制和性能调控
- 批准号:12374072
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Quantum GaN-O-Photonics
量子 GaN-O-光子学
- 批准号:EP/X03982X/1EP/X03982X/1
- 财政年份:2024
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Research GrantResearch Grant
Quantum GaN-O-Photonics
量子 GaN-O-光子学
- 批准号:EP/X040348/1EP/X040348/1
- 财政年份:2023
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Research GrantResearch Grant
Lanthanoid doped GaN quantum sensors electrically operated at room temperature
室温下电操作的镧系元素掺杂 GaN 量子传感器
- 批准号:18H0148318H01483
- 财政年份:2018
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Development of basic science and technology for nitride semiconductor optical devices by controlling phonon functions
通过控制声子函数开发氮化物半导体光器件基础科学技术
- 批准号:17H0277217H02772
- 财政年份:2017
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Development of monolithic cavity wavelength converter made of widegap semiconductors
宽禁带半导体单片腔波长转换器的开发
- 批准号:17K1907817K19078
- 财政年份:2017
- 资助金额:$ 84.11万$ 84.11万
- 项目类别:Grant-in-Aid for Challenging Research (Exploratory)Grant-in-Aid for Challenging Research (Exploratory)