Quantum GaN-O-Photonics

量子 GaN-O-光子学

基本信息

  • 批准号:
    EP/X040526/1
  • 负责人:
  • 金额:
    $ 84.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Technological advances have led to the availability of electronic devices like laptops, mobile devices and global positioning systems. In order to increase performance, modern technology has followed the path of miniaturising the components to reduce the overall size of commercial devices. Following this trend, we have now reached the point where matter can be controlled at the smallest scale: the single atom. It is in this new realm of physics that unconventional effects take place: when we deal with structures composed of just a few atoms or when we manipulate single electronic charges, the physics follows rules described by quantum mechanics. A completely new range of effects take place and devices with novel functionalities can be created: the quantum information revolution seems to be within reach.A very exciting research field focuses on the study of nanostructures, entities whose dimensions are of the order of 0.000000001m. Such small structures can be used for controlling single particles of light: single photons. Conventional light sources emit a large number of photons in a wide angular range and are mainly used for lighting and imaging. The ability to control light at the single-photon level is technologically challenging but tremendously interesting. If we can store information encoded on single photons, we can transfer it at the speed of light with a guaranteed secure communication. Single-photon emitters also find applications in imaging and medical sensing. Unfortunately, many single-photon sources operate at very low temperatures, which require the use of liquid helium, which is expensive and inconvenient for real-world applications. A material called Gallium Nitride (GaN) offers opportunities to overcome these limitations. GaN is a semiconductor crystal, and defects in that crystal can act as single-photon emitters, as can indium gallium nitride (InGaN) nanostructures embedded in a GaN matrix. Such nanostructures can emit single photons at room temperature, across a very wide range of wavelengths. However, incorporating these emitters into practical devices is very challenging. They tend to form at random locations in the crystal, which makes it hard to ensure that a device contains an optimally-positioned single emitter and that the light is emitted in the desired direction with high efficiency, as required for applications.In this project, we will develop technologies which allow us to control where an emitter forms, and integrate those site-controlled emitters with structures which extract the light from the device efficiently and channel it in a desired direction. We will create devices where the light extraction structures are integrated with the electrical injection of charge carriers into the emitter. That means that we will be able to use an applied voltage to either drive the single-photon emission or to alter the wavelength (or colour) of the emitted photon.The approach we will take to improving light extraction uses technologies that are easily incorporated into a standard manufacturing routine. We will put mirror-like structures underneath the single-photon emitters; above them, on the crystal surface, we will place tiny rings of metal, which can act like a lens, directing the light into the application system. In addition to being relatively easy to manufacture, relative to other possible technologies, this approach has additional advantages: it avoids etching the GaN crystal, which can damage device performance, and it also places less stringent requirements on achieving a very specific wavelength from the single-photon emitter. The metallic ring also doubles up as a contact for electrical injection. Overall, this provides a scalable, robust route to creating a new quantum technology - which addresses UK government priorities for advanced materials and manufacturing, and represents a crucial step forward in the implementation of quantum emitters in real-life devices.
技术进步带来了笔记本电脑、移动设备和全球定位系统等电子设备的出现。为了提高性能,现代技术已经走上了组件小型化的道路,以减小商业设备的整体尺寸。遵循这一趋势,我们现在已经达到了可以在最小尺度上控制物质的地步:单个原子。正是在这个新的物理学领域中,非常规效应发生了:当我们处理仅由几个原子组成的结构或当我们操纵单个电子电荷时,物理学遵循量子力学描述的规则。一系列全新的效应发生,并且可以创建具有新颖功能的设备:量子信息革命似乎触手可及。一个非常令人兴奋的研究领域集中于纳米结构的研究,纳米结构的尺寸为 0.000000001m 量级的实体。这种小型结构可用于控制单个光粒子:单个光子。传统光源在宽角度范围内发射大量光子,主要用于照明和成像。在单光子水平上控制光的能力在技术上具有挑战性,但非常有趣。如果我们可以存储在单光子上编码的信息,我们就可以以光速传输它,并保证安全通信。单光子发射器还在成像和医学传感领域得到应用。不幸的是,许多单光子源在非常低的温度下运行,这需要使用液氦,这对于实际应用来说既昂贵又不方便。氮化镓 (GaN) 材料提供了克服这些限制的机会。 GaN 是一种半导体晶体,该晶体中的缺陷可以充当单光子发射器,就像嵌入 GaN 基体中的氮化铟镓 (InGaN) 纳米结构一样。这种纳米结构可以在室温下发射单光子,波长范围很广。然而,将这些发射器整合到实际设备中非常具有挑战性。它们往往在晶体中的随机位置形成,这使得很难确保设备包含最佳定位的单个发射器,并且确保光按照应用要求以高效率沿所需方向发射。在这个项目中,我们将开发技术,使我们能够控制发射器的形成位置,并将这些位置控制的发射器与能够有效地从设备中提取光并将其引导到所需方向的结构相集成。我们将创建将光提取结构与将电荷载流子电注入发射器集成的设备。这意味着我们将能够使用施加的电压来驱动单光子发射或改变发射光子的波长(或颜色)。我们将采取的改进光提取的方法使用易于融入的技术标准制造程序。我们将在单光子发射器下方放置类似镜子的结构;在它们上方的晶体表面上,我们将放置微小的金属环,它可以像透镜一样将光线引导到应用系统中。相对于其他可能的技术,除了相对容易制造之外,这种方法还具有其他优点:它避免了蚀刻 GaN 晶体,这可能会损害器件性能,而且它对从单一波长实现非常特定的波长也提出了不太严格的要求。 -光子发射器。金属环还可兼作电注入触点。总体而言,这为创建新的量子技术提供了一条可扩展、稳健的途径,解决了英国政府在先进材料和制造方面的优先事项,并代表了在现实设备中实施量子发射器的关键一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Sapienza其他文献

Luca Sapienza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Sapienza', 18)}}的其他基金

On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/2
  • 财政年份:
    2023
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Research Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/1
  • 财政年份:
    2022
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Research Grant
An Atomic Force Microscopy study of buried InAs/GaAs quantum-dot single-photon sources
掩埋 InAs/GaAs 量子点单光子源的原子力显微镜研究
  • 批准号:
    EP/P001343/1
  • 财政年份:
    2016
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Research Grant

相似国自然基金

h-BN辅助四英寸毫米厚HVPE-GaN单晶准范德华外延与机械剥离技术研究
  • 批准号:
    62374001
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
GaN基电泵浦激光器结构微米线生长与器件研制
  • 批准号:
    62374062
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
氮化镓/金刚石异质结界面声子导热机制研究
  • 批准号:
    12374027
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
碳掺杂GaN中热导率和纳米尺度局域声子研究
  • 批准号:
    62374010
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
高耐压低导通氮化镓功率器件电荷调控机理与新结构
  • 批准号:
    62334003
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X03982X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Research Grant
Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X040348/1
  • 财政年份:
    2023
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Research Grant
Lanthanoid doped GaN quantum sensors electrically operated at room temperature
室温下电操作的镧系元素掺杂 GaN 量子传感器
  • 批准号:
    18H01483
  • 财政年份:
    2018
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of basic science and technology for nitride semiconductor optical devices by controlling phonon functions
通过控制声子函数开发氮化物半导体光器件基础科学技术
  • 批准号:
    17H02772
  • 财政年份:
    2017
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of monolithic cavity wavelength converter made of widegap semiconductors
宽禁带半导体单片腔波长转换器的开发
  • 批准号:
    17K19078
  • 财政年份:
    2017
  • 资助金额:
    $ 84.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了