An Atomic Force Microscopy study of buried InAs/GaAs quantum-dot single-photon sources
掩埋 InAs/GaAs 量子点单光子源的原子力显微镜研究
基本信息
- 批准号:EP/P001343/1
- 负责人:
- 金额:$ 1.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conventional light sources emit a large number of photons in a wide angular range and are mainly used for illumination or imaging purposes. Technological advances have allowed the dimensions of the components of devices to be reduced to the nanometre scale, and intriguing quantum mechanical effects have come into play. We are now able to manipulate matter at the atomic level and generate single photons, the smallest constituents of light, on-demand. The ability to control light emission at its smallest level, the single photon, is technologically challenging but tremendously interesting. The next revolution in communication is expected to take place by implementing quantum devices where light-matter interaction is engineered such that information can be stored in single photons that circulate between optical cavities within a photonic network. Given their scalability and the possibility of on-chip integration, solid-state single-photon sources are expected to be the building blocks of these novel quantum architectures. If we can store information on a single photon level, we can transfer it at the speed of light with a guaranteed secure communication: any measurement by an unwanted observer will leave a trace that will be visible to the receiver, thus unveiling the steal of information. However, several challenges are still limiting the implementation of quantum information technology in everyday life: the emitted photons only preserve their properties over a very short time-scale, often requiring cryogenic-cooled emitters excited by external lasers, and networks where information can be efficiently stored and shared are still lacking.In this project we will investigate how the presence of nanometre-scale emitters buried within a semiconductor slab affects the surface morphology and how this, in return, impacts the properties of the single photons emitted. The outcome of this work will represent a step forward in the understanding of the emission properties of quantum light sources, allowing to improve the quality and reliability of single-photon emission, essential for information technology applications, like quantum computing and cryptography.
常规的光源在宽的角范围内散发出大量光子,主要用于照明或成像目的。技术的进步使设备组件的尺寸降低到纳米量表,并且有趣的量子机械效应已经发挥作用。现在,我们能够在原子水平上操纵物质,并产生单个光子,即最小的光,点播。在最小的水平(单个光子)上控制光发射的能力在技术上具有挑战性,但非常有趣。预计下一次通信革命将通过实施量子设备进行工程,以便将信息存储在光子网络中的光腔之间的单个光子中。鉴于它们的可伸缩性和芯片积分的可能性,固态单光子源预计将是这些新型量子体系结构的基础。如果我们可以在单个光子级别上存储信息,我们可以以保证的安全通信的速度以光速传输信息:不需要的观察者的任何测量都会留下接收器可见的痕迹,从而揭示信息的窃取。 However, several challenges are still limiting the implementation of quantum information technology in everyday life: the emitted photons only preserve their properties over a very short time-scale, often requiring cryogenic-cooled emitters excited by external lasers, and networks where information can be efficiently stored and shared are still lacking.In this project we will investigate how the presence of nanometre-scale emitters buried within a semiconductor slab affects the surface morphology and作为回报,这如何影响发出的单个光子的特性。这项工作的结果将代表了解量子光源的发射特性的一步,从而可以提高单光子发射的质量和可靠性,这对于信息技术应用至关重要,例如量子计算和加密。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.
- DOI:10.1038/s41598-017-06566-5
- 发表时间:2017-07-24
- 期刊:
- 影响因子:4.6
- 作者:Sapienza L;Liu J;Song JD;Fält S;Wegscheider W;Badolato A;Srinivasan K
- 通讯作者:Srinivasan K
Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices
结合原子力显微镜和光致发光成像为量子光子器件选择单个 InAs/GaAs 量子点
- DOI:10.48550/arxiv.1612.01920
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Sapienza L
- 通讯作者:Sapienza L
Combined Atomic Force Microscopy and Photoluminescence Imaging to Increase the Yield of Quantum Dot Photonic Devices
结合原子力显微镜和光致发光成像来提高量子点光子器件的产量
- DOI:10.1364/fio.2017.fm2e.1
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Sapienza L
- 通讯作者:Sapienza L
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications
用于等离子体应用的具有纳米薄覆盖层的 GaAs 液滴量子点
- DOI:10.48550/arxiv.1710.10635
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Park S
- 通讯作者:Park S
Cavity quantum electro-dynamics with solid-state emitters in aperiodic nano-photonic spiral devices
非周期纳米光子螺旋器件中固态发射器的腔量子电动力学
- DOI:10.1063/5.0024719
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Trojak O
- 通讯作者:Trojak O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Sapienza其他文献
Luca Sapienza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Sapienza', 18)}}的其他基金
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
- 批准号:
EP/V049011/2 - 财政年份:2023
- 资助金额:
$ 1.84万 - 项目类别:
Research Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
- 批准号:
EP/V049011/1 - 财政年份:2022
- 资助金额:
$ 1.84万 - 项目类别:
Research Grant
相似国自然基金
主体异质性视角下国家战略科技力量推进关键核心技术创新的效应、路径与对策研究
- 批准号:72304276
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
社交媒体下基于力量不均衡的网络欺凌感知技术研究
- 批准号:62302223
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多维度参数耦合废锂离子电池循环利用过程降碳潜力量化评价方法
- 批准号:52300232
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
极端天气下电热能量网络容灾能力量化评估与韧性提升策略
- 批准号:62303182
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
用于癌症早期诊断的超分辨力量子等离激元单分子无标记检测技术
- 批准号:62205050
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 1.84万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 1.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 1.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 1.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 1.84万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities