An Atomic Force Microscopy study of buried InAs/GaAs quantum-dot single-photon sources

掩埋 InAs/GaAs 量子点单光子源的原子力显微镜研究

基本信息

  • 批准号:
    EP/P001343/1
  • 负责人:
  • 金额:
    $ 1.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Conventional light sources emit a large number of photons in a wide angular range and are mainly used for illumination or imaging purposes. Technological advances have allowed the dimensions of the components of devices to be reduced to the nanometre scale, and intriguing quantum mechanical effects have come into play. We are now able to manipulate matter at the atomic level and generate single photons, the smallest constituents of light, on-demand. The ability to control light emission at its smallest level, the single photon, is technologically challenging but tremendously interesting. The next revolution in communication is expected to take place by implementing quantum devices where light-matter interaction is engineered such that information can be stored in single photons that circulate between optical cavities within a photonic network. Given their scalability and the possibility of on-chip integration, solid-state single-photon sources are expected to be the building blocks of these novel quantum architectures. If we can store information on a single photon level, we can transfer it at the speed of light with a guaranteed secure communication: any measurement by an unwanted observer will leave a trace that will be visible to the receiver, thus unveiling the steal of information. However, several challenges are still limiting the implementation of quantum information technology in everyday life: the emitted photons only preserve their properties over a very short time-scale, often requiring cryogenic-cooled emitters excited by external lasers, and networks where information can be efficiently stored and shared are still lacking.In this project we will investigate how the presence of nanometre-scale emitters buried within a semiconductor slab affects the surface morphology and how this, in return, impacts the properties of the single photons emitted. The outcome of this work will represent a step forward in the understanding of the emission properties of quantum light sources, allowing to improve the quality and reliability of single-photon emission, essential for information technology applications, like quantum computing and cryptography.
传统光源在宽角度范围内发射大量光子,主要用于照明或成像目的。技术进步使设备组件的尺寸缩小到纳米尺度,并且有趣的量子力学效应开始发挥作用。我们现在能够在原子水平上操纵物质并按需生成单光子(光的最小组成部分)。将光发射控制在最小水平(即单光子)的能力在技术上具有挑战性,但也非常有趣。通信领域的下一次革命预计将通过实现量子设备来实现,在量子设备中,光与物质的相互作用被设计成可以将信息存储在在光子网络内的光腔之间循环的单个光子中。鉴于其可扩展性和片上集成的可能性,固态单光子源有望成为这些新型量子架构的构建模块。如果我们可以在单个光子水平上存储信息,我们就可以在保证安全通信的情况下以光速传输它:不需要的观察者进行的任何测量都会留下接收者可见的痕迹,从而揭露信息窃取。然而,一些挑战仍然限制着量子信息技术在日常生活中的应用:发射的光子只能在很短的时间内保持其特性,通常需要由外部激光器激发的低温冷却发射器,以及信息可以有效传输的网络。仍然缺乏存储和共享。在这个项目中,我们将研究埋在半导体板内的纳米级发射器的存在如何影响表面形态,以及这如何影响所发射的单光子的特性。这项工作的成果将代表着对量子光源发射特性的理解向前迈进了一步,从而提高了单光子发射的质量和可靠性,这对于量子计算和密码学等信息技术应用至关重要。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.
  • DOI:
    10.1038/s41598-017-06566-5
  • 发表时间:
    2017-07-24
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sapienza L;Liu J;Song JD;Fält S;Wegscheider W;Badolato A;Srinivasan K
  • 通讯作者:
    Srinivasan K
Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices
结合原子力显微镜和光致发光成像为量子光子器件选择单个 InAs/GaAs 量子点
  • DOI:
    10.48550/arxiv.1612.01920
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sapienza L
  • 通讯作者:
    Sapienza L
Combined Atomic Force Microscopy and Photoluminescence Imaging to Increase the Yield of Quantum Dot Photonic Devices
结合原子力显微镜和光致发光成像来提高量子点光子器件的产量
  • DOI:
    10.1364/fio.2017.fm2e.1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sapienza L
  • 通讯作者:
    Sapienza L
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.
用于等离子体应用的具有纳米薄覆盖层的 GaAs 液滴量子点。
  • DOI:
    10.1088/1361-6528/aab2e1
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Park SI
  • 通讯作者:
    Park SI
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications
用于等离子体应用的具有纳米薄覆盖层的 GaAs 液滴量子点
  • DOI:
    10.48550/arxiv.1710.10635
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Park S
  • 通讯作者:
    Park S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Sapienza其他文献

Luca Sapienza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Sapienza', 18)}}的其他基金

Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X040526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/2
  • 财政年份:
    2023
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant

相似国自然基金

用于癌症早期诊断的超分辨力量子等离激元单分子无标记检测技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模海上风电经柔直联网系统频率支撑能力量化评估与提升策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于有效光合辐射模拟的高密度住区绿地年碳增汇潜力量化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
社会应急力量联合救灾网络的构建、运行与评估研究
  • 批准号:
    72274131
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了