The Higman-Thompson groups, their generalisations, and automorphisms of shift spaces

希格曼-汤普森群、它们的概括以及移位空间的自同构

基本信息

  • 批准号:
    EP/X02606X/1
  • 负责人:
  • 金额:
    $ 38.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The primary objective of the proposed research is to further explore a new and important connection between group theory, combinatorics and dynamical systems. Our research build upon techniques and methodology arising in several articles of the PI and collaborators some of which have been supported by EPSRC grant EP/R032866/1. We explain broadly what each of these areas are, and, then we say how our research relates to them.Group theory is an area of crucial importance in algebra and arguably arose from the quest to find solutions of polynomial equations of degree higher than 4. The defining characteristic of groups, the objects of study in group theory, is as a means of abstracting the inherent symmetry in a structure. For example, returning to the solutions of polynomial equations, groups arose via an understanding of the symmetry in the set of solutions to a given polynomial equation; the symmetries of a geometric object such as a square, or a circle also form a group. One might consider more complicated objects, for example fractal structures which have fine detail at infinitely small scales. More generally if one considers the collection of reversible transformations of an object which preserves some inherent structure one obtains a group. In our research we are interested in the Higman-Thompson groups which arise as symmetries of the Cantor space --- a fractal space.Group theory and combinatorics are intertwined areas of research. In our research, the connection to combinatorics is by transducers. These are finite state machines with fixed alphabet --- a given state of such a machine will read-in a symbol from the alphabet, possibly transition to a different state, and will output a symbol or string from the alphabet. One can imagine that the set of transducers which transform strings of a given alphabet in a reversible way gives rise to a group. A historical example of a transducer is the enigma machine --- a cipher device.Dynamics typically involves the study of long-term trends in the evolution of a system. Day-to-day examples of dynamical systems arise from the weather and the stock-market. Most dynamical systems can be studied in a symbolic way --- giving rise to the fundamental area of symbolic dynamics. This is our point of contact. We are interested in the shift dynamical system: this is an easily described symbolic dynamical system with numerous interesting features including chaos. One considers a fixed alphabet, and the collection of all bi-infinite (extending left and right) sequences over this alphabet. The shift map simply shifts all symbols of a given bi-infinite sequence one index to the left. Groups arise by considering reversible transformations of the space of infinite sequences which are invariant under the action of the shift map --- that is one cannot distinguish between the distinct processes of first applying the shift map and then such a transformation and applying the shift map first before applying the transformation. These are the so called groups of automorphisms of the shift dynamical system and are useful in understanding local dynamics of the system. Our research arises from the recent resolution, by the PI and collaborators, of the 20 year old problem of characterising the automorphism groups (group of symmetries) of the Higman-Thompson groups. The key insight was that these groups can be described by transducers which possess a synchronization property. This property means that under certain conditions automorphisms of the Higman-Thompson groups give rise to automorphisms of the shift dynamical system. One can go in the other direction -- automorphisms of the shift dynamical system give rise to automorphisms of the Higman Thompson groups. Our research aims, building on previous work, to further explore this new-found connection: expanding techniques and methodology across both fields, to shed further light on these areas of research.
本研究的主要目的是进一步探索群论、组合学和动力系统之间新的重要联系。我们的研究建立在 PI 和合作者的几篇文章中提出的技术和方法论的基础上,其中一些文章得到了 EPSRC 拨款 EP/R032866/1 的支持。我们广泛地解释了这些领域中的每一个领域,然后我们说明了我们的研究如何与它们相关。群论是代数中至关重要的领域,可以说是源于寻找高于 4 次的多项式方程的解。群的定义特征,群论的研究对象,是抽象结构中固有对称性的一种手段。例如,回到多项式方程的解,群是通过理解给定多项式方程组解的对称性而产生的;几何对象(例如正方形或圆形)的对称性也形成群。人们可能会考虑更复杂的物体,例如在无限小尺度上具有精细细节的分形结构。更一般地,如果考虑保留某些固有结构的对象的可逆变换的集合,则可以获得一个群。在我们的研究中,我们对希格曼-汤普森群感兴趣,它是作为康托空间(分形空间)的对称性而出现的。群论和组合学是相互交织的研究领域。在我们的研究中,与组合学的联系是通过换能器实现的。这些是具有固定字母表的有限状态机——这种机器的给定状态将读入字母表中的符号,可能转换到不同的状态,并将输出字母表中的符号或字符串。人们可以想象,以可逆方式转换给定字母表的字符串的一组换能器产生了一个组。传感器的一个历史例子是恩尼格玛机——一种密码设备。动力学通常涉及对系统演化的长期趋势的研究。动力系统的日常例子来自天气和股票市场。大多数动力系统都可以用符号的方式来研究——这就产生了符号动力学的基本领域。这是我们的联系点。我们对换档动力系统感兴趣:这是一个易于描述的符号动力系统,具有许多有趣的特征,包括混沌。人们考虑一个固定的字母表,以及该字母表上所有双无限(向左和向右延伸)序列的集合。移位映射只是将给定双无限序列的所有符号向左移位一位索引。群是通过考虑在移位图的作用下不变的无限序列空间的可逆变换而产生的——也就是说,人们无法区分首先应用移位图、然后这样的变换和应用移位图的不同过程首先在应用转换之前。这些是所谓的变换动力系统的自同构群,对于理解系统的局部动力学很有用。我们的研究源于 PI 和合作者最近对描述 Higman-Thompson 群的自同构群(对称群)这一长达 20 年之久的问题的解决。关键的见解是这些组可以通过具有同步特性的传感器来描述。这一性质意味着在某些条件下,希格曼-汤普森群的自同构会引起平移动力系统的自同构。我们可以走向另一个方向——位移动力系统的自同构引起希格曼汤普森群的自同构。我们的研究目标是在之前工作的基础上,进一步探索这种新发现的联系:扩展两个领域的技术和方法,以进一步阐明这些研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feyisayo Olukoya其他文献

Feyisayo Olukoya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于汤普森采样框架的高效、安全、稳定的强化学习算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于Thompson同阶型群问题的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
关于Wielandt猜想、Thompson猜想以及群结构的其它一些疑难问题研究
  • 批准号:
    11771409
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
Thompson群F顺从性问题的研究
  • 批准号:
    11301224
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Thompson群F的有限分解复杂度和几何性质
  • 批准号:
    11226122
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Thompson群を用いた結び目理論の研究
使用汤普森群研究纽结理论
  • 批准号:
    24KJ0144
  • 财政年份:
    2024
  • 资助金额:
    $ 38.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
  • 批准号:
    EP/W007371/1
  • 财政年份:
    2022
  • 资助金额:
    $ 38.01万
  • 项目类别:
    Research Grant
NSF Ocean Instrumentation 2022: University of Washington - R/V Thompson and R/V Carson
NSF 海洋仪器 2022:华盛顿大学 - R/V Thompson 和 R/V Carson
  • 批准号:
    2217489
  • 财政年份:
    2022
  • 资助金额:
    $ 38.01万
  • 项目类别:
    Standard Grant
Queen's University of Belfast and Thompson Aero Seating Limited KTP R4 21_22
贝尔法斯特女王大学和 Thompson Aero Seating Limited KTP R4 21_22
  • 批准号:
    10025646
  • 财政年份:
    2022
  • 资助金额:
    $ 38.01万
  • 项目类别:
    Knowledge Transfer Partnership
Alluvial landscape evolution in response to deglaciation. A case study from the Thompson River, south-central British Columbia.
冲积地貌演化响应冰消作用。
  • 批准号:
    NE/X007081/1
  • 财政年份:
    2022
  • 资助金额:
    $ 38.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了