Conformational control of the structure and properties of synthetic porous materials

合成多孔材料结构和性能的构象控制

基本信息

  • 批准号:
    EP/W036673/1
  • 负责人:
  • 金额:
    $ 107.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This is a long-range basic research project that targets the synthesis of crystalline porous materials that respond to their chemical environment in the way that biological molecules do. Although the potential analogy between synthetic porous materials and biological molecules has been suggested for many years, we can now address this problem meaningfully for the first time because of the results on which the project is based. This will create immediate opportunities in fundamental science and understanding.Porous materials underpin the separation and catalysis processes of the modern chemical industry by controlling the organisation of guests in their pores. These high-performing materials, such as zeolites and carbons, all have rigid structures that do not change regardless of their chemical environment: dynamics within this single structural minimum can be important, but the size and shape of the pores that control guest response are unchanged. In contrast, the biological molecules involved in sorting, separation and catalysis can respond in a flexible manner to their chemical environment. To do this, they use rotation about single bonds to restructure in the presence of guest molecules, adopting different structures within their conformational energy landscape. The responses are characterised as conformational selection and induced fit according to the nature of the final structure and its relationship to the accessible structural states of the biological molecule. This produces exquisite chemical selectivity by organising the diverse array of spatially ordered chemical functionality that is also characteristic of biological molecules for functional performance.In contrast, we have not previously been able to prepare synthetic porous materials with controllably interconvertible structures accessible via single bond rotation, nor to introduce spatially ordered multiple chemical functions into a synthetic porous material that could restructure by such single bond rotation. The creation of tuneable synthetic porous materials that can controllably respond to guests as biomolecules do would offer pathways for the separation and transformation of small molecules that are distinct from those accessible to current synthetic porous materials.In a recent paper in Nature, we reported a crystalline porous material that responds to guests like a biological molecule. Specifically, it displays both conformational selection and induced fit responses that demonstrate a conformational energy landscape created by different rotations of single bonds in the porous material structure: these responses are then used to controllably trigger guest uptake. This project will establish how to achieve and control such guest response by creating new families of such porous materials with diverse structure and chemistry. It will thus create a new direction in porous materials research.This will be achieved by defining the synthetic chemistry required to introduce diverse chemical functionality that can broadly direct guest response, by ordering multiple functionalities precisely in space and by expanding the size and geometry of the pore systems. The resulting materials will offer new modes of guest response that will be understood through detailed evaluation of the arising structures and associated sorption behaviour. This will allow the design of improved materials based on knowledge of how to determine guest response through single bond rotation by chemistry and sequence. The range of new materials families with distinct conformational energy landscapes spanning pore sizes, geometries and chemical functionalities offer control of function in sorption, separation and catalysis by previously inaccessible mechanisms. This will allow us to evaluate and understand the impact of biomolecule-like conformational response on the capabilities of synthetic porous materials.
这是一个远程基础研究项目,它针对晶体多孔材料的合成,以生物分子的方式响应其化学环境。尽管已经提出了多年的合成多孔材料和生物分子之间的潜在类比,但由于项目的结果,我们现在可以首次有意义地解决这个问题。这将在基本科学和理解中立即创造机遇。孔子材料是通过控制毛孔中客人的组织来支撑现代化学工业的分离和催化过程。这些高性能的材料,例如沸石和碳,都具有不变的刚性结构,无论其化学环境如何:在此单个结构最小值内的动态可能很重要,但是控制来宾响应的孔的大小和形状不变。相比之下,分类,分离和催化涉及的生物分子可以灵活地对其化学环境做出反应。为此,他们使用围绕单个键的旋转在宾客分子的存在下进行重组,并在其构象能量范围内采用不同的结构。这些响应的特征是构象选择,并根据最终结构的性质及其与生物分子的可访问结构状态的关系而诱导拟合。 This produces exquisite chemical selectivity by organising the diverse array of spatially ordered chemical functionality that is also characteristic of biological molecules for functional performance.In contrast, we have not previously been able to prepare synthetic porous materials with controllably interconvertible structures accessible via single bond rotation, nor to introduce spatially ordered multiple chemical functions into a synthetic porous material that could restructure by such single bond rotation.创建可调的合成多孔材料,可以像生物分子一样对客人做出反应,这将为途径提供途径,用于分离和转化小分子,这些分子与目前的合成多孔材料不同。在最近的一篇论文中,我们报告了一种晶体的多孔材料,对客人响应了像生物学分子一样。具体而言,它既显示构象选择,又显示诱导的拟合响应,这些响应证明了由多孔材料结构中单键不同旋转产生的构象能量景观:然后使用这些响应来控制触发客人的吸收。该项目将通过创建具有多种结构和化学的多孔材料的新家庭来建立如何实现和控制此类来宾的反应。因此,它将在多孔材料研究中创建一个新的方向。这将通过定义引入各种化学功能所需的合成化学能力来实现,这些化学功能可以通过精确订购空间中的多个功能,并扩大孔系统的大小和几何形状,从而广泛地指导客人响应。最终的材料将提供新的客人响应方式,这些方式将通过详细评估出现的结构和相关的吸附行为来理解。这将允许根据如何通过化学和序列单键旋转来确定客人响应的知识来设计改进的材料。具有独特构象能景观的新材料家族跨越孔径,几何形状和化学功能的范围可通过以前无法访问的机制控制吸附,分离和催化中的功能。这将使我们能够评估和理解类似于生物分子的构象反应对合成多孔材料能力的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Rosseinsky其他文献

Matthew Rosseinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金

Digital navigation of chemical space for function
功能化学空间的数字导航
  • 批准号:
    EP/V026887/1
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
  • 批准号:
    EP/V038117/1
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
  • 批准号:
    EP/S026339/1
  • 财政年份:
    2019
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
  • 批准号:
    EP/R011753/1
  • 财政年份:
    2018
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
  • 批准号:
    EP/N010531/1
  • 财政年份:
    2016
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027255/2
  • 财政年份:
    2015
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
  • 批准号:
    EP/N004884/1
  • 财政年份:
    2015
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027212/1
  • 财政年份:
    2013
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Adaptable Porous Materials
适应性多孔材料
  • 批准号:
    EP/J008834/1
  • 财政年份:
    2012
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
  • 批准号:
    EP/H046143/1
  • 财政年份:
    2010
  • 资助金额:
    $ 107.49万
  • 项目类别:
    Research Grant

相似国自然基金

面向热-质-电均匀分布的空冷型燃料电池结构-控制协同优化设计
  • 批准号:
    52375263
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可控气泡诱导自组装石墨烯基复合薄膜多尺度结构与传热性能的协同控制
  • 批准号:
    52302104
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于调谐波纹液柱阻尼器的大型风力发电塔架结构减振控制研究
  • 批准号:
    52368074
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
大跨度封闭气膜储煤仓结构力学性能退化机理及主动控制方法研究
  • 批准号:
    52308222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有取向结构的高孔隙度、高导电纤维素碳气凝胶的可控制备及其高效硫电催化转化性能
  • 批准号:
    32301542
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
  • 批准号:
    10626847
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
  • 批准号:
    10536635
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
  • 批准号:
    10462611
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
  • 批准号:
    10184149
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
  • 批准号:
    10334403
  • 财政年份:
    2021
  • 资助金额:
    $ 107.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了