Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
基本信息
- 批准号:EP/W036673/1
- 负责人:
- 金额:$ 107.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a long-range basic research project that targets the synthesis of crystalline porous materials that respond to their chemical environment in the way that biological molecules do. Although the potential analogy between synthetic porous materials and biological molecules has been suggested for many years, we can now address this problem meaningfully for the first time because of the results on which the project is based. This will create immediate opportunities in fundamental science and understanding.Porous materials underpin the separation and catalysis processes of the modern chemical industry by controlling the organisation of guests in their pores. These high-performing materials, such as zeolites and carbons, all have rigid structures that do not change regardless of their chemical environment: dynamics within this single structural minimum can be important, but the size and shape of the pores that control guest response are unchanged. In contrast, the biological molecules involved in sorting, separation and catalysis can respond in a flexible manner to their chemical environment. To do this, they use rotation about single bonds to restructure in the presence of guest molecules, adopting different structures within their conformational energy landscape. The responses are characterised as conformational selection and induced fit according to the nature of the final structure and its relationship to the accessible structural states of the biological molecule. This produces exquisite chemical selectivity by organising the diverse array of spatially ordered chemical functionality that is also characteristic of biological molecules for functional performance.In contrast, we have not previously been able to prepare synthetic porous materials with controllably interconvertible structures accessible via single bond rotation, nor to introduce spatially ordered multiple chemical functions into a synthetic porous material that could restructure by such single bond rotation. The creation of tuneable synthetic porous materials that can controllably respond to guests as biomolecules do would offer pathways for the separation and transformation of small molecules that are distinct from those accessible to current synthetic porous materials.In a recent paper in Nature, we reported a crystalline porous material that responds to guests like a biological molecule. Specifically, it displays both conformational selection and induced fit responses that demonstrate a conformational energy landscape created by different rotations of single bonds in the porous material structure: these responses are then used to controllably trigger guest uptake. This project will establish how to achieve and control such guest response by creating new families of such porous materials with diverse structure and chemistry. It will thus create a new direction in porous materials research.This will be achieved by defining the synthetic chemistry required to introduce diverse chemical functionality that can broadly direct guest response, by ordering multiple functionalities precisely in space and by expanding the size and geometry of the pore systems. The resulting materials will offer new modes of guest response that will be understood through detailed evaluation of the arising structures and associated sorption behaviour. This will allow the design of improved materials based on knowledge of how to determine guest response through single bond rotation by chemistry and sequence. The range of new materials families with distinct conformational energy landscapes spanning pore sizes, geometries and chemical functionalities offer control of function in sorption, separation and catalysis by previously inaccessible mechanisms. This will allow us to evaluate and understand the impact of biomolecule-like conformational response on the capabilities of synthetic porous materials.
这是一个长期的基础研究项目,目标是合成结晶多孔材料,这些材料以生物分子的方式对其化学环境做出反应。尽管合成多孔材料和生物分子之间的潜在类比已被提出多年,但由于该项目所基于的结果,我们现在第一次可以有意义地解决这个问题。这将为基础科学和理解创造直接的机会。多孔材料通过控制孔中客体的组织来支撑现代化学工业的分离和催化过程。这些高性能材料,例如沸石和碳,都具有刚性结构,无论其化学环境如何,都不会改变:这种单一结构最小值内的动力学可能很重要,但控制客体响应的孔的大小和形状不会改变。相比之下,参与分选、分离和催化的生物分子可以以灵活的方式对其化学环境做出反应。为此,他们利用单键旋转在客体分子存在的情况下进行重组,在构象能量图中采用不同的结构。根据最终结构的性质及其与生物分子可接近的结构状态的关系,反应被表征为构象选择和诱导拟合。这通过组织不同的空间有序化学功能阵列产生了精致的化学选择性,这也是生物分子功能性能的特征。相比之下,我们以前无法制备具有可通过单键旋转实现的可控互变结构的合成多孔材料,也没有将空间有序的多个化学功能引入到可以通过这种单键旋转重组的合成多孔材料中。创造可调节的合成多孔材料,可以像生物分子一样对客体做出可控响应,这将为小分子的分离和转化提供途径,这些途径与目前合成多孔材料不同。在《自然》杂志最近的一篇论文中,我们报道了一种结晶像生物分子一样对客人做出反应的多孔材料。具体来说,它显示了构象选择和诱导拟合响应,展示了由多孔材料结构中单键的不同旋转创建的构象能量景观:然后使用这些响应来可控地触发客体吸收。该项目将通过创建具有不同结构和化学性质的此类多孔材料的新系列来确定如何实现和控制此类客体响应。因此,它将为多孔材料研究创造一个新的方向。这将通过定义引入多种化学功能所需的合成化学来实现,这些化学功能可以广泛地指导客体响应,通过在空间中精确地排序多种功能并通过扩展多孔材料的尺寸和几何形状来实现。孔隙系统。由此产生的材料将提供新的客体响应模式,通过对产生的结构和相关吸附行为的详细评估可以理解这种模式。这将允许基于如何通过化学和序列的单键旋转确定客体响应的知识来设计改进的材料。一系列新材料家族具有独特的构象能量景观,涵盖孔径、几何形状和化学功能,通过以前无法实现的机制提供对吸附、分离和催化功能的控制。这将使我们能够评估和了解类生物分子构象响应对合成多孔材料性能的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
- 批准号:
EP/S026339/1 - 财政年份:2019
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R011753/1 - 财政年份:2018
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027255/2 - 财政年份:2015
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:
EP/N004884/1 - 财政年份:2015
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:
EP/H046143/1 - 财政年份:2010
- 资助金额:
$ 107.49万 - 项目类别:
Research Grant
相似国自然基金
面向在轨大型结构的空间机器人多机协同接管控制方法研究
- 批准号:52305036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
增材制造镁合金点阵结构设计与降解速率控制在围关节骨缺损修复中作用机理研究
- 批准号:82372092
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抽水蓄能电站机组-厂房结构瞬态动力特性与振动控制研究
- 批准号:52379091
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高载硫三维MXene/CNT垂直阵列结构的可控制备及贫液锂硫电池研究
- 批准号:52362010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
不饱和烃氮化反应的选择性控制及其在结构多样性杂环合成中的应用
- 批准号:22371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10626847 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10536635 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10462611 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10184149 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10334403 - 财政年份:2021
- 资助金额:
$ 107.49万 - 项目类别: