Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
基本信息
- 批准号:EP/S026339/1
- 负责人:
- 金额:$ 97.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a long-range basic research project that targets the synthesis of a new crystalline materials family whose chemical, electronic and magnetic properties will create opportunities in fundamental science. To date, such advances have mainly been made in inorganic materials. This project will extend that opportunity to materials where the electronically active component is an organic anion.Our understanding of materials such as silicon and copper relies on a description of the electrons in which they do not interact strongly with each other. The electronic behaviour of materials in which the electrons do interact strongly, known as correlated materials, differs from such classical free electron materials. Correlated materials have been a fruitful source of new electronic and magnetic ground states and properties. This behaviour has overwhelmingly been observed in inorganic systems, because of the capability offered by inorganic solid state materials chemistry to position multiple distinct metal cations and thus predictably arrange spins, orbitals and charges. We have no such synthetic capability or crystal chemical understanding for organic correlated electron materials. The one example of success is the fulleride superconductors such as K3C60, where the underlying crystal chemistry is based on sphere packing that is directly analogous to well-studied inorganic systems, enabling extensive synthetic control and property design.While currently offering an outstanding range of properties, all-inorganic systems are restricted to the atoms provided by the periodic table, whose crystal and electronic structures are controlled by the ionic size and orbital characteristics of those elements. If we could achieve similar general control of structures based on electronically active organic species, such as anions derived by reduction of unsaturated molecules studied here, the resulting structural and electronic properties would be determined by the molecular size, shape and electronic structure. In contrast to the inorganic ionic systems, these steric and electronic structures of the organic molecules that would be the building blocks of such materials are controllable by synthetic chemistry.In two recent papers in Nature Chemistry, we have reported chemical synthesis approaches that produce crystalline salts of reduced unsaturated aromatic molecules and access new electronic states, including a candidate for the quantum spin liquid ground state in a three-dimensional pi-electron based material. This advance demonstrates the potential to create a family of tuneable crystalline organic electronic materials beyond the fullerides. The project will establish this family, allowing the positioning of electronically and sterically tuneable building blocks to control electronic, magnetic, optical and charge storage properties.This will be achieved by developing the synthetic chemistry capability to produce crystalline materials from a broad range of unsaturated organic molecules. To generate materials of comparable compositional and structural complexity to the inorganic systems, we will apply and expand this chemistry to materials with multiple metal sites and with more than one molecular component. This will allow us to control extended electronic structure by positioning of and charge transfer between the molecular units to target geometrically frustrated magnetic lattices and mobile charges in quantum spin liquids as examples of the new electronic ground states this chemistry will enable. The compositions, charge states and structures of the resulting hydrocarbon salts will reveal the charge storage potential of this family of materials.We will use informatics techniques to guide efficient exploration of the chemical space, and apply a range of structural, thermodynamic, spectroscopic, electronic and magnetic measurement techniques with our international collaborators to identify the new electronic states that arise.
这是一个长期的基础研究项目,旨在合成新的晶体材料家族,其化学、电子和磁性特性将为基础科学创造机会。迄今为止,这些进展主要是在无机材料方面取得的。该项目将把这个机会扩展到电子活性成分是有机阴离子的材料。我们对硅和铜等材料的理解依赖于对电子的描述,在电子中它们彼此之间不发生强烈相互作用。电子发生强烈相互作用的材料(称为相关材料)的电子行为与此类经典的自由电子材料不同。相关材料是新的电子和磁性基态和特性的丰富来源。这种行为在无机系统中已被广泛观察到,因为无机固态材料化学能够定位多种不同的金属阳离子,从而可预测地排列自旋、轨道和电荷。我们对有机相关电子材料没有这样的合成能力或晶体化学理解。成功的一个例子是富勒烯超导体,例如 K3C60,其基础晶体化学基于球体堆积,直接类似于经过充分研究的无机系统,可实现广泛的合成控制和性能设计。目前提供一系列出色的性能,全无机系统仅限于周期表中提供的原子,其晶体和电子结构由这些元素的离子大小和轨道特征控制。如果我们能够实现基于电子活性有机物质的结构的类似一般控制,例如通过还原本文研究的不饱和分子而衍生的阴离子,则所得的结构和电子特性将由分子大小、形状和电子结构决定。与无机离子系统相比,有机分子的空间和电子结构(将成为此类材料的组成部分)是可以通过合成化学控制的。在《自然化学》最近的两篇论文中,我们报道了产生结晶盐的化学合成方法减少不饱和芳香族分子并获得新的电子态,包括三维π电子材料中量子自旋液态基态的候选者。这一进展证明了创造除富勒烯之外的一系列可调谐晶体有机电子材料的潜力。该项目将建立这个系列,允许定位电子和空间可调的构建块来控制电子、磁性、光学和电荷存储特性。这将通过开发合成化学能力来实现,以从广泛的不饱和有机物中生产晶体材料分子。为了生成与无机系统具有可比较的成分和结构复杂性的材料,我们将应用这种化学并将其扩展到具有多个金属位点和多个分子组分的材料。这将使我们能够通过分子单元之间的定位和电荷转移来控制扩展的电子结构,以量子自旋液体中的几何受挫磁晶格和移动电荷为目标,作为这种化学将实现的新电子基态的例子。所得烃盐的组成、电荷状态和结构将揭示该族材料的电荷存储潜力。我们将利用信息学技术指导化学空间的有效探索,并应用一系列结构、热力学、光谱、电子学方法与我们的国际合作者合作的磁性测量技术,以确定出现的新电子态。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Throughput Discovery of a Rhombohedral Twelve-Connected Zirconium-Based Metal-Organic Framework with Ordered Terephthalate and Fumarate Linkers.
- DOI:10.1002/anie.202108150
- 发表时间:2021-12-20
- 期刊:
- 影响因子:16.6
- 作者:Tollitt, Adam M.;Vismara, Rebecca;Daniels, Luke M.;Antypov, Dmytro;Gaultois, Michael W.;Katsoulidis, Alexandros P.;Rosseinsky, Matthew J.
- 通讯作者:Rosseinsky, Matthew J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R011753/1 - 财政年份:2018
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027255/2 - 财政年份:2015
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:
EP/N004884/1 - 财政年份:2015
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:
EP/H046143/1 - 财政年份:2010
- 资助金额:
$ 97.25万 - 项目类别:
Research Grant
相似国自然基金
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
飞行器旋转翼打开过程扰动稳定性机理研究
- 批准号:U2141249
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
日本北海道奥尻岛新生代火山作用:对日本海打开深部过程的制约
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人才政策驱使下的高层次知识员工引进与企业双向开放式创新:打开“开放性”悖论
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
打开经济运行的黑箱:生态经济学“经济解构模型”的构建及其实践
- 批准号:71973008
- 批准年份:2019
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Quantum design for novel optical functional materials composed of open-shell molecules
由开壳层分子组成的新型光学功能材料的量子设计
- 批准号:
21K04995 - 财政年份:2021
- 资助金额:
$ 97.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chemistry of open-shell carbon-based pi-electron molecular materials and development into spin liquids
开壳层碳基π电子分子材料的化学及其自旋液体的发展
- 批准号:
21H01907 - 财政年份:2021
- 资助金额:
$ 97.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of single-molecule magnetoluminescence in luminescent open-shell molecules
发光开壳层分子中单分子磁致发光的实现
- 批准号:
21K14649 - 财政年份:2021
- 资助金额:
$ 97.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical design of single molecule transistor using metal complexes with open-shell electronic states
开壳层电子态金属配合物单分子晶体管的理论设计
- 批准号:
19K05401 - 财政年份:2019
- 资助金额:
$ 97.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing open-shell molecular structures of high-energy and novel spin-functional unit by use of elementary particle muons
利用基本粒子μ子开发高能新型自旋功能单元的开壳层分子结构
- 批准号:
19H02685 - 财政年份:2019
- 资助金额:
$ 97.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)