Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
基本信息
- 批准号:EP/S026339/1
- 负责人:
- 金额:$ 97.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a long-range basic research project that targets the synthesis of a new crystalline materials family whose chemical, electronic and magnetic properties will create opportunities in fundamental science. To date, such advances have mainly been made in inorganic materials. This project will extend that opportunity to materials where the electronically active component is an organic anion.Our understanding of materials such as silicon and copper relies on a description of the electrons in which they do not interact strongly with each other. The electronic behaviour of materials in which the electrons do interact strongly, known as correlated materials, differs from such classical free electron materials. Correlated materials have been a fruitful source of new electronic and magnetic ground states and properties. This behaviour has overwhelmingly been observed in inorganic systems, because of the capability offered by inorganic solid state materials chemistry to position multiple distinct metal cations and thus predictably arrange spins, orbitals and charges. We have no such synthetic capability or crystal chemical understanding for organic correlated electron materials. The one example of success is the fulleride superconductors such as K3C60, where the underlying crystal chemistry is based on sphere packing that is directly analogous to well-studied inorganic systems, enabling extensive synthetic control and property design.While currently offering an outstanding range of properties, all-inorganic systems are restricted to the atoms provided by the periodic table, whose crystal and electronic structures are controlled by the ionic size and orbital characteristics of those elements. If we could achieve similar general control of structures based on electronically active organic species, such as anions derived by reduction of unsaturated molecules studied here, the resulting structural and electronic properties would be determined by the molecular size, shape and electronic structure. In contrast to the inorganic ionic systems, these steric and electronic structures of the organic molecules that would be the building blocks of such materials are controllable by synthetic chemistry.In two recent papers in Nature Chemistry, we have reported chemical synthesis approaches that produce crystalline salts of reduced unsaturated aromatic molecules and access new electronic states, including a candidate for the quantum spin liquid ground state in a three-dimensional pi-electron based material. This advance demonstrates the potential to create a family of tuneable crystalline organic electronic materials beyond the fullerides. The project will establish this family, allowing the positioning of electronically and sterically tuneable building blocks to control electronic, magnetic, optical and charge storage properties.This will be achieved by developing the synthetic chemistry capability to produce crystalline materials from a broad range of unsaturated organic molecules. To generate materials of comparable compositional and structural complexity to the inorganic systems, we will apply and expand this chemistry to materials with multiple metal sites and with more than one molecular component. This will allow us to control extended electronic structure by positioning of and charge transfer between the molecular units to target geometrically frustrated magnetic lattices and mobile charges in quantum spin liquids as examples of the new electronic ground states this chemistry will enable. The compositions, charge states and structures of the resulting hydrocarbon salts will reveal the charge storage potential of this family of materials.We will use informatics techniques to guide efficient exploration of the chemical space, and apply a range of structural, thermodynamic, spectroscopic, electronic and magnetic measurement techniques with our international collaborators to identify the new electronic states that arise.
这是一个远程基础研究项目,它针对一种新的结晶材料家族的综合,其化学,电子和磁性特性将在基本科学中创造机会。迄今为止,这种进步主要是在无机材料中取得的。该项目将将这一机会扩展到电子活性成分是有机阴离子的材料。我们对硅和铜等材料的理解依赖于对电子不会彼此相互作用的电子的描述。电子确实相互作用(称为相关材料)的材料的电子行为与这种经典的免费电子材料不同。相关材料已成为新的电子和磁接地状态和特性的富有成果的来源。由于无机固态材料化学的能力使多个不同的金属阳离子定位,因此可以预见地安排旋转,轨道和电荷,因此在无机系统中观察到了这种行为。对于有机相关电子材料,我们没有这种合成能力或晶体化学理解。成功的一个例子是富勒剂超导体,例如K3C60,其中基础的晶体化学基于球体包装,直接与良好的无机系统类似,从而实现了广泛的合成控制和属性设计。当前提供出色的属性范围,由整体限制,其在整体上限制了晶体的构造,其晶体是在晶体上的构造,并且是晶体的构造,并且是晶体的,并且具有时期的晶体,并具有时期的范围,并具有时期的范围。这些元素的轨道特征。如果我们可以基于电子活性有机物种(例如通过还原的不饱和分子来得出的阴离子)实现类似的结构的一般控制,那么所产生的结构和电子性能将由分子大小,形状和电子结构确定。与无机离子系统相反,有机分子的这些空间和电子结构将是这种材料的基础,可以通过合成化学来控制。在自然化学的最新论文中,我们报告了化学合成方法,这些化学合成方法可产生不饱和芳族分子的晶体质量的结晶盐,包括新的芳香族型均可培养物,并访问了新的均可型号,该状态是一种均可供应的芳族分子,并均可产生均可用来的芳香族化学剂量,该质量是新的均可用的芳族分子的旋转。基于Pi电子的材料。这一进步证明了创建富勒底层以外的可调晶体有机电子材料家族的潜力。该项目将建立该家族,允许将电子和空间可调的构件定位以控制电子,磁性,光学和电荷存储特性。这将通过开发合成化学能力来实现,从而从广泛的不饱和有机分子中生产结晶材料。为了生成与无机系统具有可比组成和结构复杂性的材料,我们将将其应用和扩展到具有多个金属位点并具有多个分子成分的材料。这将使我们能够通过在分子单元之间定位和电荷转移来控制扩展的电子结构,以靶向量子旋转液体中的几何沮丧的磁性晶格和移动电荷,作为新电子接地状态的示例,这种化学性能将实现。所得烃盐的组成,电荷状态和结构将揭示该材料家族的电荷存储潜力。我们将使用信息学技术来指导对化学空间的有效探索,并应用一系列结构性,热力学,光学,光谱,电子,电子和磁性测量技术,与我们的国际合作者一起确定新的电子状态。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Throughput Discovery of a Rhombohedral Twelve-Connected Zirconium-Based Metal-Organic Framework with Ordered Terephthalate and Fumarate Linkers.
- DOI:10.1002/anie.202108150
- 发表时间:2021-12-20
- 期刊:
- 影响因子:16.6
- 作者:Tollitt, Adam M.;Vismara, Rebecca;Daniels, Luke M.;Antypov, Dmytro;Gaultois, Michael W.;Katsoulidis, Alexandros P.;Rosseinsky, Matthew J.
- 通讯作者:Rosseinsky, Matthew J.
共 1 条
- 1
Matthew Rosseinsky的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:EP/W036673/1EP/W036673/1
- 财政年份:2023
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:EP/V026887/1EP/V026887/1
- 财政年份:2021
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:EP/V038117/1EP/V038117/1
- 财政年份:2021
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:EP/R011753/1EP/R011753/1
- 财政年份:2018
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:EP/N010531/1EP/N010531/1
- 财政年份:2016
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:EP/K027255/2EP/K027255/2
- 财政年份:2015
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:EP/N004884/1EP/N004884/1
- 财政年份:2015
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:EP/K027212/1EP/K027212/1
- 财政年份:2013
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Adaptable Porous Materials
适应性多孔材料
- 批准号:EP/J008834/1EP/J008834/1
- 财政年份:2012
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:EP/H046143/1EP/H046143/1
- 财政年份:2010
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Research GrantResearch Grant
相似国自然基金
西藏拉萨地块二叠—三叠系沉积演化及对新特提斯洋打开时间的约束
- 批准号:42302125
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:32270899
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
飞行器旋转翼打开过程扰动稳定性机理研究
- 批准号:U2141249
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
日本北海道奥尻岛新生代火山作用:对日本海打开深部过程的制约
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum design for novel optical functional materials composed of open-shell molecules
由开壳层分子组成的新型光学功能材料的量子设计
- 批准号:21K0499521K04995
- 财政年份:2021
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Chemistry of open-shell carbon-based pi-electron molecular materials and development into spin liquids
开壳层碳基π电子分子材料的化学及其自旋液体的发展
- 批准号:21H0190721H01907
- 财政年份:2021
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Realization of single-molecule magnetoluminescence in luminescent open-shell molecules
发光开壳层分子中单分子磁致发光的实现
- 批准号:21K1464921K14649
- 财政年份:2021
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Theoretical design of single molecule transistor using metal complexes with open-shell electronic states
开壳层电子态金属配合物单分子晶体管的理论设计
- 批准号:19K0540119K05401
- 财政年份:2019
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Developing open-shell molecular structures of high-energy and novel spin-functional unit by use of elementary particle muons
利用基本粒子μ子开发高能新型自旋功能单元的开壳层分子结构
- 批准号:19H0268519H02685
- 财政年份:2019
- 资助金额:$ 97.25万$ 97.25万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)