Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
基本信息
- 批准号:10462611
- 负责人:
- 金额:$ 37.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseBenchmarkingBindingBinding ProteinsCD69 antigenChemicalsChemistryChromatin Remodeling FactorCircular DichroismClinicalCollaborationsComplexCystic FibrosisDataData AnalysesDefectDifferential Scanning CalorimetryDiseaseDrug TargetingDyesEquationFailureFluorescenceGoalsGoldHydrophobicityIndividualKineticsKnowledgeLabelLibrariesLigand BindingLinkMachine LearningMeasurementMeasuresMembraneMethodsModalityMolecular ConformationMonitorMultiprotein ComplexesNeurodegenerative DisordersNucleic Acid BindingOrangesPharmaceutical ChemistryPilot ProjectsProcessPropertyProteinsReportingResearchRoleScanningSeriesSpecificityStructure-Activity RelationshipSystemTechnologyTemperatureTestingTherapeuticTimeVX-770Workaerobic respiration control proteinbasecheminformaticsconformational conversiondesignenzyme activityexperimental studyhigh throughput screeninghigh throughput technologyhuman diseaseimprovedinnovationinstrumentinterestlarge datasetsmeltingmetalloenzymenew technologynext generationnovel therapeuticsprotein complexprotein foldingprotein misfoldingpublic databasereconstitutionsimulationsmall moleculesuccesstau Proteinstheoriesweb portal
项目摘要
Abstract. There is great interest in technologies that measure protein stability, because many devastating
diseases (e.g. cystic fibrosis, Alzheimer’s disease) are linked to protein misfolding and instability. One especially
promising way to treat these diseases is to use small molecules, termed “correctors” that bind to the damaged
protein and partially restore its folding. Multiple correctors have received FDA approval (e.g. ivacaftor, tafamadis,
migalastat), but there are hundreds of additional misfolding diseases. What are the hurdles to the rapid discovery
of additional correctors? One important barrier is that previous correctors have been uncovered through
prolonged searches, using specialized (i.e. target-specific) technologies that are not versatile enough for use
across many proteins-of-interest (POIs). Here, we propose next-generation Differential Scanning Fluorimetry
(DSF) to fill this gap. In a typical DSF experiment, a POI is heated in a qPCR instrument and its un-folding is
monitored by its binding to a solvatochromatic dye (e.g. Sypro Orange, SO). The resulting temperature vs.
fluorescence curves are then used to estimate the melting transition (Tm), with putative correctors identified by
their effect on this value (DTm). DSF is versatile because it does not require protein labeling or structural
knowledge. Moreover, unlike comparable platforms, such as circular dichroism (CD) or differential scanning
calorimetry (DSC), DSF is amenable to 384-well plate format, facilitating large-scale chemical screens. While
DSF has the potential to transform corrector discovery, there are major hurdles to overcome. For example, DSF
often fails because SO does not bind the target protein or it binds to hydrophobic patches on the native state,
obscuring the Tm. Further, for some POIs, the temperature-fluorescence curves are complex, with multiple
transitions, and therefore not readily analyzed or fit using standard equations. Based on our preliminary screens
of ~50 different proteins, these issues cause DSF to fail in more than 60% of cases. We propose to solve these
issues through disruptive innovations: (SA1) Design and synthesis of next-generation dye libraries that
significantly expand the scope of DSF and (SA2) Theory- and experiment-driven, dramatic improvements in data
analysis, enabled by machine learning and made publicly available through a web portal (DSFWorld).
Encouraged by preliminary success, we also propose to: (SA3) Expand the scope of DSF applications by
pioneering studies of multi-protein complexes and conformational changes. Importantly, we will benchmark each
of these innovations against current state-of-the-art approaches, with a focus on a critical understanding of
strengths and weaknesses. Together, these studies are expected to dramatically expand the scope of DSF
technology.
摘要 人们对测量蛋白质稳定性的技术非常感兴趣,因为许多技术具有破坏性。
疾病(例如囊性纤维化、阿尔茨海默病)与蛋白质错误折叠和不稳定有关,尤其是其中之一。
治疗这些疾病的有前途的方法是使用小分子,称为“校正剂”,与受损的细胞结合
蛋白质并部分恢复其折叠,多种校正剂已获得 FDA 批准(例如 ivacaftor、tafamadis、
migalastat),但还有数百种其他错误折叠疾病的快速发现的障碍是什么。
一个重要的障碍是以前的校正器已经被发现了
长时间的搜索,使用通用性不够强的专门(即针对特定目标)技术
在这里,我们提出了下一代差示扫描荧光测定法。
(DSF) 来填补这一空白 在典型的 DSF 实验中,POI 在 qPCR 仪器中加热,然后将其展开。
通过其与溶剂化显色染料(例如 Sypro Orange,SO)的结合进行监测。
然后使用荧光曲线来估计熔化转变 (Tm),并通过以下方式确定假定的校正器
它们对该值 (DTm) 的影响是多方面的,因为它不需要蛋白质标记或结构。
与圆二色性 (CD) 或差分扫描等同类平台不同。
量热法 (DSC),DSF 适合 384 孔板格式,有利于大规模化学筛选。
DSF 有潜力改变校正器的发现,但有一些重大障碍需要克服,例如 DSF。
经常失败,因为 SO 不结合目标蛋白或者它结合到天然状态的疏水斑块,
模糊 Tm 此外,对于某些 POI,温度-荧光曲线很复杂,有多个。
转变,因此不容易根据我们的初步屏幕进行分析或拟合。
约 50 种不同的蛋白质,这些问题导致 DSF 在超过 60% 的情况下失败,我们建议解决这些问题。
通过颠覆性创新解决问题:(SA1)设计和合成下一代染料库,
显着扩展了 DSF 和 (SA2) 理论和实验驱动的范围,数据显着改进
分析,由机器学习支持,并通过门户网站 (DSFWorld) 公开提供。
受到初步成功的鼓舞,我们还建议: (SA3) 扩大 DSF 应用范围
重要的是,我们将对多蛋白质复合物和构象变化进行基准测试。
这些创新针对当前最先进的方法,重点是对
总之,这些研究预计将极大地扩大 DSF 的范围。
技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason E Gestwicki其他文献
Exploration of the Binding Determinants of Protein Phosphatase 5 (PP5) Reveals a Chaperone-Independent Activation Mechanism.
蛋白磷酸酶 5 (PP5) 结合决定因素的探索揭示了一种不依赖分子伴侣的激活机制。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Shweta Devi;Annemarie Charvat;Zoe Millbern;Nelson Vinueza;Jason E Gestwicki - 通讯作者:
Jason E Gestwicki
Jason E Gestwicki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason E Gestwicki', 18)}}的其他基金
Chemical Biology Approaches to Studying Collagen IV Stability
研究胶原蛋白 IV 稳定性的化学生物学方法
- 批准号:
10723042 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别:
Research Training in Chemistry and Chemical Biology
化学和化学生物学研究培训
- 批准号:
10410908 - 财政年份:2022
- 资助金额:
$ 37.46万 - 项目类别:
Research Training in Chemistry and Chemical Biology
化学和化学生物学研究培训
- 批准号:
10624303 - 财政年份:2022
- 资助金额:
$ 37.46万 - 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10626847 - 财政年份:2021
- 资助金额:
$ 37.46万 - 项目类别:
Differential Scanning Fluorimetry (DSF) Methods for Studying Protein Stability
研究蛋白质稳定性的差示扫描荧光 (DSF) 方法
- 批准号:
10184149 - 财政年份:2021
- 资助金额:
$ 37.46万 - 项目类别:
Activation of the 20S Proteasome to Normalize Tau Homeostasis
激活 20S 蛋白酶体使 Tau 稳态正常化
- 批准号:
9329344 - 财政年份:2016
- 资助金额:
$ 37.46万 - 项目类别:
Chemical Probes and Chaperone-Accelerated Turnover of Tau
化学探针和分子伴侣加速 Tau 蛋白的周转
- 批准号:
8519207 - 财政年份:2012
- 资助金额:
$ 37.46万 - 项目类别:
Natural Product-Inspired Method for Enhancing HIV Protease Inhibitors
增强 HIV 蛋白酶抑制剂的天然产物方法
- 批准号:
8259867 - 财政年份:2012
- 资助金额:
$ 37.46万 - 项目类别:
Natural Product-Inspired Method for Enhancing HIV Protease Inhibitors
增强 HIV 蛋白酶抑制剂的天然产物方法
- 批准号:
8416319 - 财政年份:2012
- 资助金额:
$ 37.46万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 37.46万 - 项目类别: