Parallel-in-time computation for sedimentary landscapes
沉积景观的并行时间计算
基本信息
- 批准号:EP/W015439/1
- 负责人:
- 金额:$ 10.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is about novel mathematical techniques underpinningcomputational stratigraphic models that simulate the formation oflandscapes of sedimentary rock. Sedimentary rocks form after gradualsettling of microscopic particles (formed from minerals, or comingfrom plants or animals) that are suspended in ocean water. Overmillions of years, the particles settle on the ocean floor, eventuallycondensing into rocks such as shale and limestone. By mathematicallymodelling this process on a computer and comparing with geologicaldata, we can learn about the evolution of our present landscape onPlanet Earth, and we can use it to fill in the gaps betweendata. These models have applications in locating carbon capture andstorage sites, and in reconstructions of recent geological history ofcoral reefs, for example.Stratigraphic models simulate the evolution of the sediment over time,stepping from one moment in time to a later one in the near future,executing "timesteps" one by one in a sequential manner. Accuratemodelling of the sediment processes requires that these timesteps are0.1-1 years long. Since sedimentary landscapes form over geologicaleras that are millions of years long, this means that we have toexecute millions of timesteps, one after the other. This isprohibitively long, especially when the models are needed for dataassimilation algorithms that search for unknown properties of pastrock formation processes in the light of data obtained from geologicalmeasurement campaigns. This is because these data assimilationalgorithms have to repeat the simulation many times with varyingparameter values. In these situations, stratigraphic modellers areforced to use timesteps that are 1000s of years long: this yieldsresults of insufficient accuracy.Our goal is to create new mathematical techniques that can make use ofhighly parallel supercomputers, leading to much faster simulations andenabling more sophisticated data assimilation algorithms to be used.Instead of the sequential one-timestep-at-a-time approach, we willcreate new algorithms that solve for all of the timestepssimultaneously on a large number of computer processors in parallel.We call this parallel-in-time integration. The algorithms will beiterative, computing first guesses for the model predictions for eachtimestep and then updating them until they are sufficientlyaccurate. A good parallel-in-time integration method will only requirea small number of iterations, so that the result of the algorithm isquicker than sequential computation. Finding a good parallel-in-timeintegration method is a mathematical problem, with the number ofiterations being strongly dependent on the structure of the equationsthat describe the simulation model. Parallel-in-time approaches havenever been investigated for stratigraphic models. In this project wewill start a new field of numerical analysis research, designingparallel-in-time integration methods for stratigraphic models andanalysing them using a blend of theoretical analysis and highperformance computational experiments to identify the best pathforward.
该提议是关于基础计算层层模型的新型数学技术,该技术模拟了沉积岩石景观的形成。在悬浮在海水中的微观颗粒(由矿物或动物的降临物形成)逐渐燃料(由矿物或降落的动物形成)后形成沉积岩。超过数百万年的颗粒落在海底上,最终构成了页岩和石灰石等岩石。通过在计算机上数学编码这一过程并与地质数据进行比较,我们可以了解当前景观OnPlanet Earth的演变,我们可以使用它来填补bapweendata的空白。这些模型在定位碳捕获和存储地点以及重建最近的地质历史上有应用。沉积物过程的准确销售要求这些时间步长为0.1 - 1年。由于在数百万年的地质上形成了沉积景观,因此这意味着我们必须执行数百万个时间段,一个接一个。这是长时间的,尤其是当需要根据地质计量活动获得的数据来搜索pastrock形成过程的未知属性的数据密集算法时。这是因为这些数据同化为以不同的参数值重复多次模拟。在这些情况下,地层模块被迫使用时间到1000年的时间步长:这将产生不足的准确性。我们的目标是创建新的数学技术,这些技术可以使高度平行的超级计算机可以使用更快的模拟和更典型的数据,从而实现了更加有成熟的数据,以实现更典型的数据,以实现序列,以实现良好的效果。方法,我们将创建新的算法,这些算法并行在大量计算机处理器上求解所有时间段。我们称此并行时间集成。这些算法将良好,计算每个三键预测的模型预测,然后对其进行更新,直到它们充分使用为止。良好的平行时间集成方法只需要少量的迭代,因此算法ISQuicker的结果比顺序计算。找到一个良好的平行时间整合方法是一个数学问题,其中的数量很大程度上取决于方程的结构,这些方程描述了仿真模型。研究地层模型已研究并行的方法。在这个项目中,我们将开始一个新的数值分析研究领域,使用理论分析和高性能计算实验的融合,为地层模型设计了时间的积分方法,并将其设计为识别最佳路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Cotter其他文献
On the calibration of multilevel Monte Carlo ensemble forecasts
多级蒙特卡罗集合预报的校准
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Alastair Gregory;Colin Cotter - 通讯作者:
Colin Cotter
A mixed finite-element, finite-volume, semi-implicit discretisation for atmospheric dynamics: Spherical geometry
大气动力学的混合有限元、有限体积、半隐式离散:球面几何
- DOI:
10.48550/arxiv.2402.13738 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Thomas Melvin;Ben Shipway;Nigel Wood;Tommaso Benacchio;T. Bendall;I. Boutle;Alex Brown;Christine Johnson;James Kent;Stephen Pring;Chris Smith;M. Zerroukat;Colin Cotter;J. Thuburn - 通讯作者:
J. Thuburn
Colin Cotter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Cotter', 18)}}的其他基金
Next generation particle filters for stochastic partial differential equations
用于随机偏微分方程的下一代粒子滤波器
- 批准号:
EP/W016125/1 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Parallel Paradigms for Numerical Weather Prediction
数值天气预报的并行范式
- 批准号:
NE/R008795/1 - 财政年份:2018
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Moving meshes for global atmospheric modelling
用于全球大气建模的移动网格
- 批准号:
NE/M013634/1 - 财政年份:2015
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Next Generation Weather and Climate Prediction: Atmospheric Model Dynamical Core
下一代天气和气候预测:大气模型动力核心
- 批准号:
NE/I02013X/1 - 财政年份:2011
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
A new approach to guaranteeing physical wave propagation on triangular meshes for numerical weather prediction
保证数值天气预报三角网格上物理波传播的新方法
- 批准号:
NE/I016007/1 - 财政年份:2011
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Unstructured mesh dynamical core for atmospheric modelling using geophysically-optimal finite elements
使用地球物理最优有限元进行大气建模的非结构化网格动力核心
- 批准号:
NE/I000747/1 - 财政年份:2010
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Diagnosing multiscale entrainment in density-driven flows in the ocean
诊断海洋中密度驱动流的多尺度夹带
- 批准号:
NE/G000212/1 - 财政年份:2009
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
相似国自然基金
非线性磁流体空间分数阶模型长时间计算研究
- 批准号:12301516
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数值计算广义非线性薛定谔方程的黎曼希尔伯特问题和长时间演化
- 批准号:12205029
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高时间分辨单光子计算光谱仪
- 批准号:62227820
- 批准年份:2022
- 资助金额:755.00 万元
- 项目类别:国家重大科研仪器研制项目
高维时间序列的频域主成分分析:理论、计算和应用
- 批准号:72203090
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复合时间拓扑关系高效表达及相似度精确计算方法研究
- 批准号:42201505
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Single-cell computation in auditory brainstem and its impact on cortical coding and behavior
听觉脑干中的单细胞计算及其对皮质编码和行为的影响
- 批准号:
10455326 - 财政年份:2020
- 资助金额:
$ 10.27万 - 项目类别:
Optical imaging of tissue properties to guide bowel resection and anastomosis
组织特性的光学成像指导肠切除和吻合
- 批准号:
8910137 - 财政年份:2015
- 资助金额:
$ 10.27万 - 项目类别:
Fast Parallel Computation and Real Time Visualization on GPU Cluster
GPU集群上的快速并行计算和实时可视化
- 批准号:
21500052 - 财政年份:2009
- 资助金额:
$ 10.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEVELOPMENT OF PARALLEL COMPUTATION SYSTEM FOR TOMOGRAPHIC RECONSTRUCTION
断层重建并行计算系统的开发
- 批准号:
7722814 - 财政年份:2008
- 资助金额:
$ 10.27万 - 项目类别:
New Trend in DMRG - from the Optimization of the Tensor Product Decomposition
DMRG新趋势——来自张量积分解的优化
- 批准号:
17540327 - 财政年份:2005
- 资助金额:
$ 10.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)