Single-cell computation in auditory brainstem and its impact on cortical coding and behavior
听觉脑干中的单细胞计算及其对皮质编码和行为的影响
基本信息
- 批准号:10455326
- 负责人:
- 金额:$ 10.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsAuditoryAuditory PerceptionAuditory areaAuditory systemAxonBehaviorBehavioralBindingBiological ModelsBiophysicsBrainBrain StemBrain imagingCell physiologyCellsCochleaCochlear nucleusCodeComplexComputer ModelsComputing MethodologiesDataDecision MakingDendritesDetectionDiseaseEarElectron MicroscopyElectrophysiology (science)ElementsExperimental ModelsFrequenciesGene Expression ProfilingGoalsHeadHearingImageIn VitroIndividualInferior ColliculusLearningLinkMethodsMidbrain structureModelingMolecularMolecular AnalysisMorphologyMouse StrainsMusNeuronsOctopusOutputPatternPerceptionPerformancePhysiologicalPhysiologyPlayPopulationPositioning AttributeProcessPropertyPsychometricsResolutionRoleSensoryShapesSpeechStimulusStreamStudy modelsSynapsesSystemTestingThalamic structureTimeTrainingTranslatingTravelWhole-Cell RecordingsWorkauditory pathwayauditory thalamusawakebasebiophysical analysisbrain cellcell typeconfocal imagingexperimental studyin vivoinsightmillisecondmultidisciplinarynervous system disorderneuronal circuitrynovel strategiesoptogeneticsparallel processingpatch sequencingpredictive modelingreconstructionresponsesensory inputsensory mechanismsensory systemsoundspatiotemporalspiral ganglionsuccesstooltranscriptome sequencingtwo-photonvoltage
项目摘要
Project Abstract
Understanding how neuronal computations build up a perception of the external world is fundamental to our
understanding of how the brain works. This is particularly relevant to sensory systems, where heterogenous
inputs representing distinct sensory features must be re-assembled to generate a perception. How individual
neurons in early stages of sensory circuits process parallel inputs, and how these circuit elements later contribute
to cortical computations that bind the inputs together is completely unknown. Studies have demonstrated that
the timing, position and strength of a given input along the dendrite of a given neuron is a critical strategy used
by the brain to encode sensory features. However, how such dendritic integrations of inputs in single neurons
contribute to an animal's overall perception is not understood.
To re-assemble diverse features from the same initial stimulus, the brain needs to determine which features
occurred at the same time. Currently, little is known about how or where this timing information might be encoded.
The auditory system offers an ideal system to tackle this question based on its tractability to interdisciplinary
methods and its known ability to encode even miniscule differences in timing. Specifically, we will take advantage
of a unique cell type in the auditory cochlear nucleus, called octopus cells, as a model to investigate the question
of how small cell classes contribute to behavioral and perceptual circuits. Octopus cells are prominent in all
mammalian species and are well known to encode temporal inputs with submillisecond precision through
integration of primary sensory inputs along their large and extensive dendrites. We propose to carry out a multi-
lab, integrated analysis of the molecular and biophysical properties of octopus cells and to track how these single
cell computations are transformed along the auditory pathway to contribute to an animal's final auditory percept
and hence behavior. Using the mouse as a model system, we will apply new sequencing methods together with
high resolution brain imaging and single cell reconstructions to create a comprehensive wiring diagram of
octopus cells and their auditory inputs. By generating mouse strains for selective access to octopus cells, we will
be ideally positioned to investigate the in vitro and in vivo physiology of octopus cells and therefore bridge
experimental and computational models for how timing information is encoded at the single cell level. Lastly, we
will study how timing information propagates to higher auditory centers by recording from large populations of
neurons in the midbrain, thalamus, and cortex and then assessing the functional relevance of temporal coding
for auditory behavior. By leveraging molecular, biophysical, electrophysiological, behavioral, and computational
approaches toward the study of this model cell type, these studies will allow us to extract general principles of
single cell computations and their effects on systems-level circuit function, with broad implications for
understanding how parallel streams of information are integrated to generate sensory perception.
项目摘要
了解神经元计算如何建立对外部世界的感知对于我们来说至关重要
了解大脑如何运作。这与感觉系统尤其相关,其中异质的
代表不同感官特征的输入必须重新组合才能产生感知。多么有个性
感觉电路早期阶段的神经元处理并行输入,以及这些电路元件后来如何做出贡献
将输入绑定在一起的皮层计算是完全未知的。研究表明
沿给定神经元树突的给定输入的时间、位置和强度是所使用的关键策略
由大脑编码感官特征。然而,单个神经元中输入的这种树突整合是如何实现的?
对动物整体感知的贡献尚不清楚。
为了从相同的初始刺激中重新组合不同的特征,大脑需要确定哪些特征
同时发生。目前,人们对如何或在何处编码该定时信息知之甚少。
听觉系统提供了一个理想的系统来解决这个问题,因为它易于跨学科
方法及其已知的编码时间差异的能力。具体来说,我们将利用
听觉耳蜗核中一种独特的细胞类型,称为章鱼细胞,作为研究该问题的模型
研究小细胞类别如何促进行为和感知回路。章鱼细胞在所有
哺乳动物物种,众所周知以亚毫秒精度编码时间输入
沿着大而广泛的树突整合主要感觉输入。我们建议开展多项
实验室对章鱼细胞的分子和生物物理特性进行综合分析,并跟踪这些单个细胞如何
细胞计算沿着听觉通路进行转换,以促进动物的最终听觉感知
以及由此产生的行为。使用小鼠作为模型系统,我们将应用新的测序方法
高分辨率脑成像和单细胞重建以创建全面的接线图
章鱼细胞及其听觉输入。通过培育选择性接触章鱼细胞的小鼠品系,我们将
非常适合研究章鱼细胞的体外和体内生理学,从而弥合
关于如何在单细胞水平上编码定时信息的实验和计算模型。最后,我们
将研究定时信息如何通过记录大量的听觉中心传播到更高的听觉中心
中脑、丘脑和皮质中的神经元,然后评估时间编码的功能相关性
对于听觉行为。通过利用分子、生物物理、电生理、行为和计算
研究这种模型细胞类型的方法,这些研究将使我们能够提取一般原则
单细胞计算及其对系统级电路功能的影响,对
了解并行信息流如何集成以产生感官知觉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nace L Golding其他文献
Nace L Golding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nace L Golding', 18)}}的其他基金
Single-Cell Computation in Auditory Brainstem and its Impact on Cortical Coding and Behavior
听觉脑干中的单细胞计算及其对皮质编码和行为的影响
- 批准号:
10795699 - 财政年份:2020
- 资助金额:
$ 10.06万 - 项目类别:
Discovery of functional cell types in the inferior colliculus with combined molecular-genetic and electrophysiological approaches
结合分子遗传学和电生理学方法发现下丘功能细胞类型
- 批准号:
9300564 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
Synergistic in vivo and in vitro approaches in the MSO
MSO 中的体内和体外协同方法
- 批准号:
8032251 - 财政年份:2011
- 资助金额:
$ 10.06万 - 项目类别:
Synergistic in vivo and in vitro approaches in the MSO
MSO 中的体内和体外协同方法
- 批准号:
8212018 - 财政年份:2011
- 资助金额:
$ 10.06万 - 项目类别:
Pre-Doctoral Training in Interdisciplinary Neuroscience
跨学科神经科学博士前培训
- 批准号:
10163823 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
PRE-DOCTORAL TRAINING IN INTERDISCIPLINARY NEUROSCIENCE
跨学科神经科学博士前培训
- 批准号:
10606255 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
Dendritic Integration and Synaptic Plasticity in the MSO
MSO 中的树突整合和突触可塑性
- 批准号:
10316175 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
Dendritic integration and synaptic plasticity in the MSO
MSO 中的树突整合和突触可塑性
- 批准号:
8516491 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
Dendritic integration and synaptic plasticity in the MSO
MSO 中的树突整合和突触可塑性
- 批准号:
8387949 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
Pre-Doctoral Training in Interdisciplinary Neuroscience
跨学科神经科学博士前培训
- 批准号:
10441322 - 财政年份:2004
- 资助金额:
$ 10.06万 - 项目类别:
相似国自然基金
自闭症动物模型听觉皮层声调谐异常及其机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
脑型钠通道在水杨酸钠耳鸣模型听皮层异常兴奋中的作用及机制研究
- 批准号:81900930
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
mTOR信号通路在耳蜗毛细胞发育和存活中的调控作用及其机制研究
- 批准号:81900937
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
听觉序列预测编码:一项清醒狨猴功能磁共振成像研究
- 批准号:31900797
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用基因敲除小鼠研究CDK5在毛细胞发育及听觉中的功能
- 批准号:81771001
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
- 批准号:
10658004 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别: