Responsible AI for Long-term Trustworthy Autonomous Systems (RAILS): Integrating Responsible AI and Socio-legal Governance
用于长期可信自治系统(RAILS)的负责任的人工智能:将负责任的人工智能与社会法律治理相结合
基本信息
- 批准号:EP/W011344/1
- 负责人:
- 金额:$ 90.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Society is seeing enormous growth in the development and implementation of autonomous systems, which can offer significant benefits to citizens, communities, and businesses. The potential for improvements in societal wellbeing is substantial. However, this positive potential is balanced by a similar potential for societal harm through contingent effects such as the environmental footprint of autonomous systems, systemic disadvantage for some socio-economic groups, and entrenchment of digital divides. The rollout of autonomous systems must therefore be addressed with responsibilities to society in mind. This must include engaging in dialogue with society and with those affected, trying to anticipate challenges before they occur, and responding to them. One such anticipated challenge is the effect of change on autonomous systems. Autonomous systems are not designed to be deployed in conditions of perfect stasis, as they are unlikely to encounter such conditions in real-world environments. They are frequently designed for changing environments, like public roads, and may also be designed to change themselves over time, for instance by means of learning capabilities. Not only that, but these changes in deployed systems and in their operating conditions are also likely to take place against a shifting contextual background of societal alteration (e.g. other technologies, 'black swan' events, or simply the day-to-day operation of communities). The effects of such change, on the systems themselves, on the environments within which they are operating, and on the humans with which they engage, must be considered as part of a responsible innovation approach. The RAILS project brings together a team from UCL and the Universities of York, Leeds and Oxford, from multiple disciplines, with the aim of engaging with the challenges associated with the long-term operation of autonomous systems and the effects of change on these systems. In particular, we will explore how the notion of responsibility is affected by (i) open-ended dynamic environments - situations that change over time, and(ii) lifelong-learning systems - i.e. systems that are designed to adapt themselves to their circumstances and 'learn' over time. The RAILS project will focus on such independent long-term autonomous systems in different applications. These will include (i) autonomous vehicles and (ii) autonomous robot systems such as unmanned aerial vehicles (drones). RAILS will look at social and legal contexts, as well as technical requirements, in order to assess whether and how these systems can be designed, developed, and operated in a way that they are responsible, accountable, and trustworthy. The overall aim of the RAILS project is to bring together responsible development principles with governance mechanisms and technical understanding to create new understandings of how autonomous systems can adapt to change, how they can be deployed in a responsible and trustworthy way, and how such deployment can be framed by governance to ensure accountability and flexibility.
社会正在看到自治系统的发展和实施巨大的增长,这可以为公民,社区和企业带来重大利益。改善社会健康的潜力是巨大的。但是,这种积极的潜力通过偶然的影响(例如自主系统的环境足迹,对于某些社会经济群体的全身劣势)以及数字分歧的根深蒂固的环境劣势来平衡社会伤害的潜力。因此,必须考虑对社会的责任来解决自主系统的推出。这必须包括与社会和受影响的人进行对话,试图在挑战发生之前预测挑战并回应它们。一个预期的挑战是变革对自主系统的影响。自主系统的设计并非被设计为在完美的停滞条件下部署,因为它们不太可能在现实世界环境中遇到这种情况。它们通常是为不断变化的环境(例如公共道路)而设计的,也可以设计为随着时间的流逝而改变自己,例如通过学习能力。不仅如此,而且在部署系统及其操作条件下的这些变化也可能发生在不断变化的社会改变背景下(例如其他技术,“黑天鹅”事件,或仅仅是社区的日常运营)。这种变化对系统本身,对其运营环境以及与之参与的人类的影响的影响必须被视为负责任的创新方法的一部分。 Rails项目汇集了来自UCL和约克,利兹和牛津大学的一个团队,来自多个学科,目的是应对与自主系统的长期运作相关的挑战以及变革对这些系统的影响。特别是,我们将探讨责任概念如何受(i)开放式动态环境的影响 - 随着时间的流逝而改变的情况以及(ii)终身学习系统 - 即旨在适应自己的环境并随着时间的流逝而“学习”的系统。 Rails项目将重点关注不同应用中这种独立的长期自治系统。这些将包括(i)自动驾驶汽车和(ii)自动驾驶机器人系统,例如无人机(无人机)。 Rails将研究社会和法律环境以及技术要求,以评估是否以及如何以负责,负责和值得信赖的方式设计,开发和运行这些系统。铁路项目的总体目的是将负责任的发展原则与治理机制和技术理解结合在一起,以对自治系统如何适应变化,如何以负责任和值得信赖的方式部署它们以及如何通过治理来确保责任感和灵活性来构成此类部署。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
- DOI:10.48550/arxiv.2302.00064
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Rhys Howard;L. Kunze
- 通讯作者:Rhys Howard;L. Kunze
Simulation-Based Counterfactual Causal Discovery on Real World Driver Behaviour
基于模拟的现实世界驾驶员行为的反事实因果发现
- DOI:10.1109/iv55152.2023.10186705
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Howard R
- 通讯作者:Howard R
Explainable Action Prediction through Self-Supervision on Scene Graphs
- DOI:10.1109/icra48891.2023.10161132
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Pawit Kochakarn;D. Martini;Daniel Omeiza;L. Kunze
- 通讯作者:Pawit Kochakarn;D. Martini;Daniel Omeiza;L. Kunze
CC-SGG: Corner Case Scenario Generation using Learned Scene Graphs
- DOI:10.48550/arxiv.2309.09844
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:George Drayson;Efimia Panagiotaki;Daniel Omeiza;Lars Kunze
- 通讯作者:George Drayson;Efimia Panagiotaki;Daniel Omeiza;Lars Kunze
The SAGE Handbook of Digital Society
数字社会 SAGE 手册
- DOI:10.4135/9781529783193
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Housley W
- 通讯作者:Housley W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars Kunze其他文献
Indirect Object Search based on Qualitative Spatial Relations
基于定性空间关系的间接对象搜索
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lars Kunze;Nick Hawes - 通讯作者:
Nick Hawes
Ethical Risk Assessment for Social Robots: Case Studies in Smart Robot Toys
社交机器人的道德风险评估:智能机器人玩具案例研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alan F. T. Winfield;A. V. Maris;Katie Winkle;Marina Jirotka;P. Salvini;Helena Webb;Arianna Schuler Scott;J. L. Freeman;Lars Kunze;P. Slovak;Nikki Theofanopoulou - 通讯作者:
Nikki Theofanopoulou
Transitioning Towards a Proactive Practice: A Longitudinal Field Study on the Implementation of a ML System in Adult Social Care
转向主动实践:成人社会护理中机器学习系统实施的纵向实地研究
- DOI:
10.1145/3613904.3642247 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tyler Reinmund;Lars Kunze;Marina Jirotka - 通讯作者:
Marina Jirotka
Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness
测试自动驾驶汽车和人工智能:网络安全、透明度、稳健性和公平性的观点和挑战
- DOI:
10.48550/arxiv.2403.14641 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Fern'andez Llorca;Ronan Hamon;Henrik Junklewitz;Kathrin Grosse;Lars Kunze;Patrick Seiniger;Robert Swaim;Nick Reed;Alexandre Alahi;Emilia G'omez;Ignacio S'anchez;Á. Kriston - 通讯作者:
Á. Kriston
Spatial Referring Expression Generation for HRI: Algorithms and Evaluation Framework
HRI 的空间指代表达式生成:算法和评估框架
- DOI:
10.3115/1708322.1708333 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lars Kunze;T. Williams;Nick Hawes;Matthias Scheutz - 通讯作者:
Matthias Scheutz
Lars Kunze的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
AI-2受体甲基趋化蛋白介导牛月形单胞菌对瘤胃碳水化合物趋化性的作用机制
- 批准号:32302685
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于国产AI芯片的自动布局布线优化算法研究
- 批准号:62306286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
- 批准号:
22KJ0878 - 财政年份:2023
- 资助金额:
$ 90.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 90.48万 - 项目类别:
Standard Grant
SLES: A Theoretical Lens on Generative AI Safety: Near and Long Term
SLES:生成式人工智能安全的理论视角:近期和长期
- 批准号:
2331831 - 财政年份:2023
- 资助金额:
$ 90.48万 - 项目类别:
Standard Grant
CULTURALLY CENTERED MED. ASSISTED TREATMENT OUD IMPLEMENTATION FOR PRIMARY CARE AND ADDICTION TREATMENT PROGRAMS SERVING AI/AN (CTN-0096). 03/01/2022 - 11/01/2024. DSC6. 75N95023F00001 (TO5).
以文化为中心的医学。
- 批准号:
10936264 - 财政年份:2023
- 资助金额:
$ 90.48万 - 项目类别:
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312866 - 财政年份:2023
- 资助金额:
$ 90.48万 - 项目类别:
Standard Grant