Made Smarter Innovation - Digital Medicines Manufacturing Research Centre

更智能的创新 - 数字药品制造研究中心

基本信息

  • 批准号:
    EP/V062077/1
  • 负责人:
  • 金额:
    $ 648.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Powered by data, Industrial Digital Technologies (IDTs) such as artificial intelligence and autonomous robots, can be used to improve all aspects of manufacturing and supply of products along supply chains to the customer. Many companies are embracing these technologies but uptake within the pharmaceutical sector has not been as rapid. The Medicines Made Smarter Data Centre (MMSDC) looks to address the key challenges which are slowing digitalisation, and adoption of IDTs that can transform processes to deliver medicines tailored to patient needs.Work will be carried out across five integrated platforms designed by academic and industrial researcher teams. These are: 1) The Data Platform, 2) Autonomous MicroScale Manufacturing Platform, 3) Digital Quality Control Platform, 4) Adaptive Digital Supply Platform, and 5) The MMSDC Network & Skills Platform.Platform 1 addresses one of the sector's core digitalisation challenges - a lack of large data sets and ways to access such data. The MMSDC data platform will store and analyse data from across the MMSDC project, making it accessible, searchable and reusable for the medicines manufacturing community. New approaches for ensuring consistently high-quality data, such as good practice guides and standards, will be developed alongside data science activities which will identify what the most important data are and how best to use them with IDTs in practice.Platform 2 will accelerate development of medicine products and manufacturing processes by creating agile, small-scale production facilities that rapidly generate large data sets and drive research. Robotic technologies will be assembled to create a unique small-scale medicine manufacturing and testing system to select drug formulations and processes to produce stable products with the desired in-vitro performance. Integrating several IDTs will accelerate drug product manufacture, significantly reducing experiments and dramatically reducing development time, raw materials and associated costs.Platform 3 focusses on the digitalisation of Quality Control (QC) aspects of medicines development which is important for ensuring a medicine's compliance with regulatory standards and patient safety requirements. Currently, QC checks are carried out after a process has been completed possibly spotting problems after they have occurred. This approach is inefficient, fragmented, costly (>20% of total production costs) and time consuming. The digital QC platform will research how to transform QC by utilising rich data from IDTs to confirm in real time product and process compliance. Platform 4 will generate new understanding on future supply chain needs of medicines to support adoption of adaptive digital supply chains for patient-centric supply. IDTs make smaller scale, autonomous factory concepts viable that support more flexible and distributed manufacture and supply. Supply flexibility and agility extends to scale, product variety, and shorter lead-times (from months to days) offering a responsive patient-centric or rapid replenishment operating model. Finally, technology developments closer to the patient, such as diagnostics provide visibility on patient specific needs.Platform 5 will establish the MMSDC Network & Skills Platform. This Network will lead engagement and collaboration across key stakeholder groups involved in medicines manufacturing and investments. The Network brings together the IDT-using community and other relevant academic and industrial groups to share developments across pharmaceuticals and broader digital manufacturing sectors ensuring cross-sector diffusion of MMSDC research. Existing strategic networks will support MMSDC and act as gateways for IDT dissemination and uptake. The lack of appropriate skills in the workforce has been highlighted as a key barrier to IDT adoption. An MMSDC priority is to identify skills needs and with partners develop and deliver training to over 100 users
在数据的支持下,人工智能和自主机器人等工业数字技术 (IDT) 可用于改善供应链上向客户提供产品的制造和供应的各个方面。许多公司正在采用这些技术,但制药行业的采用速度并不那么快。 Medicines Made Smarter 数据中心 (MMSDC) 旨在解决数字化放缓的关键挑战,并采用 IDT 来改变流程,以提供适合患者需求的药物。工作将在由学术界和工业界设计的五个集成平台上进行研究人员团队。它们是:1) 数据平台、2) 自主微型制造平台、3) 数字质量控制平台、4) 自适应数字供应平台和 5) MMSDC 网络和技能平台。平台 1 解决了该行业的核心数字化挑战之一- 缺乏大型数据集和访问此类数据的方法。 MMSDC 数据平台将存储和分析整个 MMSDC 项目的数据,使其可供药品制造界访问、搜索和重复使用。确保始终如一的高质量数据的新方法,例如良好实践指南和标准,将与数据科学活动一起开发,这些活动将确定最重要的数据是什么以及如何在实践中最好地将它们与 IDT 一起使用。平台 2 将加速开发通过创建敏捷的小规模生产设施来快速生成大型数据集并推动研究,从而改进药品和制造流程。机器人技术将被整合起来,创建一个独特的小规模药品制造和测试系统,以选择药物配方和工艺,以生产具有所需体外性能的稳定产品。集成多个 IDT 将加速药品生产,显着减少实验,并大幅减少开发时间、原材料和相关成本。平台 3 专注于药品开发质量控制 (QC) 方面的数字化,这对于确保药品符合法规非常重要标准和患者安全要求。目前,质量控制检查是在流程完成后进行的,可能会在问题发生后发现问题。这种方法效率低下、分散、成本高昂(> 总生产成本的 20%)且耗时。数字QC平台将研究如何利用IDT的丰富数据来转变QC,以实时确认产品和流程的合规性。平台 4 将产生对未来药品供应链需求的新认识,以支持采用自适应数字供应链来实现以患者为中心的供应。 IDT 使较小规模的自主工厂概念变得可行,支持更灵活和分布式的制造和供应。供应灵活性和敏捷性延伸到规模、产品多样性和更短的交货时间(从几个月到几天),提供响应迅速的以患者为中心或快速补货的运营模式。最后,更贴近患者的技术发展,例如诊断,提供了患者特定需求的可见性。平台 5 将建立 MMSDC 网络和技能平台。该网络将领导参与药品制造和投资的主要利益相关者群体的参与和协作。该网络将 IDT 使用社区和其他相关学术和工业团体聚集在一起,分享制药和更广泛的数字制造行业的发展,确保 MMSDC 研究的跨行业传播。现有的战略网络将支持 MMSDC 并充当 IDT 传播和采用的网关。劳动力缺乏适当的技能已被视为采用 IDT 的主要障碍。 MMSDC 的首要任务是确定技能需求,并与合作伙伴一起开发并向 100 多名用户提供培训

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Complete-Surface-Finding Algorithm for Online Surface Scanning with Limited View Sensors.
  • DOI:
    10.3390/s21227692
  • 发表时间:
    2021-11-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Poole A;Sutcliffe M;Pierce G;Gachagan A
  • 通讯作者:
    Gachagan A
Configuration of digital and physical infrastructure platforms: Private and public perspectives
数字和物理基础设施平台的配置:私人和公共视角
32nd European Symposium on Computer Aided Process Engineering
第32届欧洲计算机辅助过程工程研讨会
  • DOI:
    10.1016/b978-0-323-95879-0.50161-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li D
  • 通讯作者:
    Li D
Autonomous, Digital-Twin Free Path Planning and Deployment for Robotic NDT: Introducing LPAS: Locate, Plan, Approach, Scan Using Low Cost Vision Sensors
机器人 NDT 的自主、数字孪生自由路径规划和部署:LPAS 简介:使用低成本视觉传感器进行定位、规划、接近和扫描
  • DOI:
    10.3390/app12105288
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Poole A
  • 通讯作者:
    Poole A
Lightweight digital twin as a service (LDTaaS): a cost-efficient digital transformation approach for manufacturing SMEs
轻量级数字孪生即服务 (LDTaaS):面向制造业中小企业的一种经济高效的数字化转型方法
  • DOI:
    10.1049/icp.2023.1731
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo D
  • 通讯作者:
    Guo D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alastair Florence其他文献

Emerging Applications and Regulatory Strategies for Advanced Medicines Manufacturing - Towards the Development of a Platform Approach.
先进药品制造的新兴应用和监管策略 - 致力于开发平台方法。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Srai;Paul Bauer;C. Badman;Massimo Bresciani;Charles L. Cooney;Alastair Florence;Doug Hausner;Konstantin Konstantinov;Sau L. Lee;Salvatore Mascia;Moheb Nasr;B. Trout
  • 通讯作者:
    B. Trout

Alastair Florence的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alastair Florence', 18)}}的其他基金

Digital Design and Manufacture of Amorphous Pharmaceuticals (DDMAP)
无定形药物的数字化设计与制造(DDMAP)
  • 批准号:
    EP/W003295/1
  • 财政年份:
    2022
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Pressure-dependent In-Situ Monitoring of Granular Materials
颗粒材料的压力相关原位监测
  • 批准号:
    EP/S02168X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Future Continuous Manufacturing and Advanced Crystallisation Research Hub
未来连续制造和先进结晶研究中心
  • 批准号:
    EP/P006965/1
  • 财政年份:
    2017
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Development of an Innovative Modular System for Continuous Chemical Processing
开发连续化学处理的创新模块化系统
  • 批准号:
    EP/K504117/1
  • 财政年份:
    2013
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
MOPP. Made to Order Process Plants
莫普。
  • 批准号:
    EP/K504129/1
  • 财政年份:
    2013
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
EPSRC Centre for Innovative Manufacturing for Continuous Manufacturing and Crystallisation
EPSRC 连续制造和结晶创新制造中心
  • 批准号:
    EP/I033459/1
  • 财政年份:
    2011
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant

相似海外基金

Made Smarter Innovation: manufacturing sustainability accelerator
更智能的创新:制造业可持续发展加速器
  • 批准号:
    10060093
  • 财政年份:
    2023
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Investment Accelerator
Made Smarter Innovation - Research Centre for Connected Factories
更智能的创新 - 互联工厂研究中心
  • 批准号:
    EP/V062123/1
  • 财政年份:
    2021
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Made Smarter Innovation - Research Centre for Smart, Collaborative Industrial Robotics
更智能的创新 - 智能协作工业机器人研究中心
  • 批准号:
    EP/V062158/1
  • 财政年份:
    2021
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Made Smarter Innovation - Materials Made Smarter Research Centre
更智能的创新 - 更智能的材料研究中心
  • 批准号:
    EP/V061798/1
  • 财政年份:
    2021
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
Made Smarter Innovation - People-Led Digitalisation
实现更智能的创新——以人为本的数字化
  • 批准号:
    EP/V062042/1
  • 财政年份:
    2021
  • 资助金额:
    $ 648.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了