Future Continuous Manufacturing and Advanced Crystallisation Research Hub
未来连续制造和先进结晶研究中心
基本信息
- 批准号:EP/P006965/1
- 负责人:
- 金额:$ 1384.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our Hub research is driven by the societal need to produce medicines and materials for modern living through novel manufacturing processes. The enormous value of the industries manufacturing these high value products is estimated to generate £50 billion p.a. in the UK economy. To ensure international competitiveness for this huge UK industry we must urgently create new approaches for the rapid design of these systems, controlling how molecules self-assemble into small crystals, in order to best formulate and deliver these for patient and customer. We must also develop the engineering tools, process operations and control methods to manufacture these products in a resource-efficient way, while delivering the highest quality materials. Changing the way in which these materials are made, from what is called "batch" crystallisation (using large volume tanks) to "continuous" crystallisation (a more dynamic, "flowing" process), gives many advantages, including smaller facilities, more efficient use of expensive ingredients such as solvents, reducing energy requirements, capital investment, working capital, minimising risk and variation and, crucially, improving control over the quality and performance of the particles making them more suitable for formulation into final products. The vision is to quickly and reliably design a process to manufacture a given material into the ideal particle using an efficient continuous process, and ensure its effective delivery to the consumer. This will bring precision medicines and other highly customisable projects to market more quickly. An exemplar is the hubs exciting innovation partnership with Cancer Research UK. Our research will develop robust design procedures for rapid development of new particulate products and innovative processes, integrate crystallisation and formulation to eliminate processing steps and develop reconfiguration strategies for flexible production. This will accelerate innovation towards redistributed manufacturing, more personalisation of products, and manufacturing closer to the patient/customer. We will develop a modular MicroFactory for integrated particle engineering, coupled with a fully integrated, computer-modelling approach to guide the design of processes and materials at molecule, particle and formulation levels. This will help optimise what we call the patient-centric supply chain and provide customisable products. We will make greater use of targeted experimental design, prediction and advanced computer simulation of new formulated materials, to control and optimise the processes to manufacture them. Our talented team of scientists will use the outstanding capabilities in the award winning £34m CMAC National Facility at Strathclyde and across our 6 leading university spokes (Bath, Cambridge, Imperial, Leeds, Loughborough, Sheffield). This builds on existing foundations independently recognised by global industry as 'exemplary collaboration between industry, academia and government which represents the future of pharmaceutical manufacturing and supply chain R&D framework'. Our vision will be translated from research into industry through partnership and co-investment of £31m. This includes 10 of world's largest pharmaceutical companies (eg AstraZeneca, GSK), chemicals and food companies (Syngenta, Croda, Mars) and 19 key technology companies (Siemens, 15 SMEs) Together, with innovation spokes eg Catapult (CPI) we aim to provide the UK with the most advanced, integrated capabilities to deliver continuous manufacture, leading to better materials, better value, more sustainable and flexible processes and better health and well-being for the people of the UK and worldwide. CMAC will create future competitive advantage for the UK in medicines manufacturing and chemicals sector and is strongly supported by industry / government bodies, positioning the UK as the investment location choice for future investments in research and manufacturing.
我们的中心研究是由通过新颖的制造工艺生产现代生活药品和材料的社会需求驱动的,这些高价值产品的制造行业的巨大价值预计每年可为英国经济创造 500 亿英镑的收入。对于这个庞大的英国产业,我们必须紧急创建新的方法来快速设计这些系统,控制分子如何自组装成小晶体,以便最好地为患者和客户配制和交付这些系统,我们还必须开发工程工具,制造过程操作和控制方法以资源高效的方式生产这些产品,同时提供最高质量的材料,改变这些材料的制造方式,从所谓的“批量”结晶(使用大容量罐)到“连续”结晶(更动态、更稳定的结晶)。 “流动”工艺)具有许多优势,包括更小的设施、更有效地使用溶剂等昂贵成分、降低能源需求、资本投资、营运资金、最大限度地减少风险和变化,最重要的是,提高对产品质量和性能的控制粒子使它们变得更多其愿景是快速可靠地设计一种工艺,使用高效的连续工艺将给定材料制造成理想的颗粒,并确保其有效地交付给消费者,这将带来精准的药物和其他高度可定制的产品。一个例子是该中心与英国癌症研究中心令人兴奋的创新合作伙伴关系,我们的研究将开发稳健的设计程序,以快速开发新的颗粒产品和创新工艺,整合结晶和配方以消除加工步骤并制定重新配置策略。灵活生产。这将加速创新,实现重新分配制造、产品更加个性化以及更贴近患者/客户的制造。我们将开发用于集成颗粒工程的模块化 MicroFactory,并结合完全集成的计算机建模方法来指导流程和设计。这将有助于优化我们所谓的以患者为中心的供应链,并提供可定制的产品,我们将更多地利用新配方材料的有针对性的实验设计、预测和先进的计算机模拟。优化我们才华横溢的科学家团队将利用位于斯特拉斯克莱德的屡获殊荣的 3400 万英镑 CMAC 国家设施以及我们 6 所领先大学(巴斯大学、剑桥大学、帝国理工学院、利兹大学、拉夫堡大学、谢菲尔德大学)的卓越能力。基于被全球行业独立认可的“行业、学术界和政府之间的典范合作,代表了药品制造和供应链研发框架的未来”,我们的愿景将从研究中转化而来。通过合作和共同投资 3100 万英镑进入工业领域,其中包括 10 家全球最大的制药公司(例如阿斯利康、葛兰素史克)、化学品和食品公司(先正达、禾大、玛氏)以及 19 家关键技术公司(西门子、15 家中小企业)。 ,通过 Catapult (CPI) 等创新辐条,我们的目标是为英国提供最先进的集成能力,以实现连续制造,从而带来更好的材料、更高的价值、更可持续和灵活的流程以及为英国和全世界人民带来更好的健康和福祉,CMAC将为英国在药品制造和化学品领域创造未来强大的竞争优势,并得到行业/政府机构的支持,将英国定位为未来的投资地点选择。研究和制造方面的投资。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterisation of inclusion complexes using powder X-ray diffraction, and low- and mid-frequency Raman spectroscopy
使用粉末 X 射线衍射和低频和中频拉曼光谱表征包合物
- DOI:10.17868/strath.00081766
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abdallah N
- 通讯作者:Abdallah N
Engineering a New Access Route to Metastable Polymorphs with Electrical Confinement
- DOI:10.1021/acs.cgd.9b01100
- 发表时间:2020-03-01
- 期刊:
- 影响因子:3.8
- 作者:Al-Ani, Aneesa J.;Herdes, Carmelo;Castro-Dominguez, Bernardo
- 通讯作者:Castro-Dominguez, Bernardo
X-ray Raman scattering: a new in situ probe of molecular structure during nucleation and crystallization from liquid solutions
- DOI:10.1039/c8ce00929e
- 发表时间:2018-11-21
- 期刊:
- 影响因子:3.1
- 作者:Al-Madhagi, Laila H.;Chang, Sin-Yuen;Schroeder, Sven L. M.
- 通讯作者:Schroeder, Sven L. M.
Multi-sensor inline measurements of crystal size and shape distributions during high shear wet milling of crystal slurries
晶体浆料高剪切湿磨过程中晶体尺寸和形状分布的多传感器在线测量
- DOI:10.1016/j.apt.2018.09.003
- 发表时间:2018
- 期刊:
- 影响因子:5.2
- 作者:Agimelen O
- 通讯作者:Agimelen O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alastair Florence其他文献
Emerging Applications and Regulatory Strategies for Advanced Medicines Manufacturing - Towards the Development of a Platform Approach.
先进药品制造的新兴应用和监管策略 - 致力于开发平台方法。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Srai;Paul Bauer;C. Badman;Massimo Bresciani;Charles L. Cooney;Alastair Florence;Doug Hausner;Konstantin Konstantinov;Sau L. Lee;Salvatore Mascia;Moheb Nasr;B. Trout - 通讯作者:
B. Trout
Alastair Florence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alastair Florence', 18)}}的其他基金
Digital Design and Manufacture of Amorphous Pharmaceuticals (DDMAP)
无定形药物的数字化设计与制造(DDMAP)
- 批准号:
EP/W003295/1 - 财政年份:2022
- 资助金额:
$ 1384.39万 - 项目类别:
Research Grant
Made Smarter Innovation - Digital Medicines Manufacturing Research Centre
更智能的创新 - 数字药品制造研究中心
- 批准号:
EP/V062077/1 - 财政年份:2021
- 资助金额:
$ 1384.39万 - 项目类别:
Research Grant
Pressure-dependent In-Situ Monitoring of Granular Materials
颗粒材料的压力相关原位监测
- 批准号:
EP/S02168X/1 - 财政年份:2019
- 资助金额:
$ 1384.39万 - 项目类别:
Research Grant
Development of an Innovative Modular System for Continuous Chemical Processing
开发连续化学处理的创新模块化系统
- 批准号:
EP/K504117/1 - 财政年份:2013
- 资助金额:
$ 1384.39万 - 项目类别:
Research Grant
EPSRC Centre for Innovative Manufacturing for Continuous Manufacturing and Crystallisation
EPSRC 连续制造和结晶创新制造中心
- 批准号:
EP/I033459/1 - 财政年份:2011
- 资助金额:
$ 1384.39万 - 项目类别:
Research Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于聚合松香诱导的高取向聚乳酸纳米纤维的连续纺丝新方法及机理研究
- 批准号:52303039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
连续层化内孤立波对潜式结构的荷载及运动响应研究
- 批准号:52301323
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片上中红外超连续光与狭缝波导的化学传感器研究
- 批准号:62305304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向经鼻颅底手术的微型复合连续体机器人研究
- 批准号:52375020
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Prapela® SVS incubator pad: A cost-effective stochastic vibrotactile device to improve the clinical course of infants with apnea of prematurity.
Prapela® SVS 保温箱垫:一种经济高效的随机振动触觉设备,可改善早产儿呼吸暂停婴儿的临床病程。
- 批准号:
10576754 - 财政年份:2023
- 资助金额:
$ 1384.39万 - 项目类别:
Hatching Organoids for Continuous Tissue Production Pipelines
用于连续组织生产管道的孵化类器官
- 批准号:
10433762 - 财政年份:2022
- 资助金额:
$ 1384.39万 - 项目类别:
Hatching Organoids for Continuous Tissue Production Pipelines
用于连续组织生产管道的孵化类器官
- 批准号:
10667497 - 财政年份:2022
- 资助金额:
$ 1384.39万 - 项目类别:
iOP-Connect System for Long-Term Continuous Monitoring of Glaucoma Therapy by means of an Implantable Autonomous Intraocular Pressure Sensor
iOP-Connect 系统通过植入式自主眼压传感器长期连续监测青光眼治疗
- 批准号:
10556408 - 财政年份:2022
- 资助金额:
$ 1384.39万 - 项目类别:
Continuous Chromatography Device to Economically Purify Clinical-grade Antibodies
用于经济地纯化临床级抗体的连续层析设备
- 批准号:
8781175 - 财政年份:2014
- 资助金额:
$ 1384.39万 - 项目类别: