3D Nanophotonics in Artificially Structured Chalcogenide Materials

人工结构硫族化物材料中的 3D 纳米光子学

基本信息

  • 批准号:
    EP/V040030/1
  • 负责人:
  • 金额:
    $ 48.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The iridescent colours often seen in nature in butterfly wings, beetle carapaces and cuttlefish mating displays are a result of the wave nature of light which can show constructive and destructive interference effects for different colours. We can make in the lab repeated structures where the repeat period is close to the wavelength of light and see similar effects; a well-known example being the reflection from a compact disc but also the opposite effect is seen in the anti-reflection coating applied to spectacles which can be seen in the violet coloured high angle reflections. In fact, the angular sensitivity of these diffractive reflection effects can lead to wonderful rainbow reflective colour displays, while some three-dimensional structures such as butterfly wings suppress this angular change; as in the case of the famous blue morphospecies which maintains a largely blue wing colour while flying.In this project, we aim to build three-dimensional repeating structures that can lead to very strong reflection effects while reducing the angular changes normally seen with two-dimensional gratings and mirrors. These 3D periodic materials can effectively reflect light incident from any angle for a particular range of colours (wavelengths) and essentially block light from passing through the material in any direction. These materials are known as photonic bandgap materials because they block a band of colours and because they have properties analogous to the semiconductor bandgaps that block electrons travelling in certain energy bands. Although difficult to fabricate, these materials could exhibit quite striking and useful effects. For instance, blocking all transmission in all directions could be used as protection against bright light (e.g. lasers) or the bandgap could be made sensitive to certain molecular species or pollutants providing a sensing modality. In our team, we have been looking at the light trapping properties of these materials and their effect on light emission. For instance, if a fluorescent dye molecule with emission band entirely within the bandgap is excited inside such an ideal material then it will have no route by which to emit light and remain in its excited state until decaying by a non-radiative route. However, if we create a cavity by removing a small amount of material, the light emission will occur but will be trapped in this cavity until absorbed or leaking through the finite barrier to the edge of the material. Theoretically, these storage times can be very long while the cavity volumes can be made very small which can lead to a strong enhancement of emission and absorption of light by the fluorophore, so-called 'strong coupling' predicted by the full quantum mechanical treatments of the light-matter interaction.Finally, in this project, we will develop reliable techniques to make these 3D light confining materials and exploit their novel properties to trap light in tiny 'cavities' and waveguides thus showing the strongest light-matter interactions possible. These results will have an impact across the board from creating new light sources containing single 'atom' like emitters through to the smallest lasers and materials mimicking the reflectivity of butterfly wings.
自然界中蝴蝶翅膀、甲虫甲壳和乌贼交配展示中常见的彩虹色是光的波动性的结果,它可以对不同颜色表现出相长和相消干涉效应。我们可以在实验室中制作重复周期接近光波长的重复结构,并看到类似的效果;一个众所周知的例子是光盘的反射,但在眼镜上的抗反射涂层中也可以看到相反的效果,这可以在紫色的高角度反射中看到。事实上,这些衍射反射效应的角度敏感性可以导致美妙的彩虹反射彩色显示,而一些三维结构(例如蝴蝶翅膀)会抑制这种角度变化;就像著名的蓝色形态物种一样,它在飞行时保持大部分蓝色的翅膀颜色。在这个项目中,我们的目标是构建三维重复结构,可以产生非常强的反射效果,同时减少通常在二维中看到的角度变化。立体光栅和镜子。这些 3D 周期性材料可以有效反射从任何角度入射的特定颜色(波长)范围的光,并基本上阻止光以任何方向穿过材料。这些材料被称为光子带隙材料,因为它们阻挡颜色带,并且因为它们具有类似于阻挡电子在某些能带中传播的半导体带隙的特性。尽管制造起来很困难,但这些材料可以表现出相当惊人和有用的效果。例如,阻止所有方向上的所有传输可以用作针对强光(例如激光)的保护,或者可以使带隙对某些分子种类或污染物敏感,从而提供传感方式。在我们的团队中,我们一直在研究这些材料的光捕获特性及其对光发射的影响。例如,如果发射带完全在带隙内的荧光染料分子在这样的理想材料内被激发,那么它将没有途径发光并保持其激发态,直到通过非辐射途径衰变。然而,如果我们通过去除少量材料来创建空腔,则光发射将会发生,但会被困在该空腔中,直到被吸收或通过有限屏障泄漏到材料边缘。理论上,这些存储时间可以很长,而腔体体积可以做得非常小,这可以导致荧光团光的发射和吸收的强烈增强,即通过全量子力学处理预测的所谓“强耦合”最后,在这个项目中,我们将开发可靠的技术来制造这些 3D 光限制材料,并利用它们的新颖特性将光捕获在微小的“腔”和波导中,从而显示出最强的光与物质相互作用 可能的。这些结果将对从创建包含单个“原子”类发射器的新光源到模仿蝴蝶翅膀反射率的最小激光器和材料产生全面影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strongly Confining Light with Air-Mode Cavities in Inverse Rod-Connected Diamond Photonic Crystals
反杆连接金刚石光子晶体中空气模腔的强限制光
  • DOI:
    10.3390/cryst12030303
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Taverne M
  • 通讯作者:
    Taverne M
Modified Photonic Band Gap Via Thermal Shrinkage of Two-Photon Polymerized Distributed Bragg Reflectors
通过双光子聚合分布式布拉格反射器的热收缩来修改光子带隙
  • DOI:
    10.1109/cleo/europe-eqec57999.2023.10232036
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Y
  • 通讯作者:
    Chen Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying-Lung HO其他文献

Ying-Lung HO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying-Lung HO', 18)}}的其他基金

Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Research Grant

相似国自然基金

自组装DNA折纸模板指导贵金属图案化生长调控及其纳米光子学性质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向纳米光子学的新型等离激元混合纳米光源研究
  • 批准号:
    12174244
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
纳米光子学非局部光学模型的降阶计算研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表面等离激元纳米光子学
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
纳米光子学结构K2CsSb光电阴极的研究
  • 批准号:
    62061001
  • 批准年份:
    2020
  • 资助金额:
    38 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    ARC Future Fellowships
Van der Waals nanophotonics
范德华纳米光子学
  • 批准号:
    2887484
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Studentship
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了