3D Nanophotonics in Artificially Structured Chalcogenide Materials

人工结构硫族化物材料中的 3D 纳米光子学

基本信息

  • 批准号:
    EP/V040030/1
  • 负责人:
  • 金额:
    $ 48.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The iridescent colours often seen in nature in butterfly wings, beetle carapaces and cuttlefish mating displays are a result of the wave nature of light which can show constructive and destructive interference effects for different colours. We can make in the lab repeated structures where the repeat period is close to the wavelength of light and see similar effects; a well-known example being the reflection from a compact disc but also the opposite effect is seen in the anti-reflection coating applied to spectacles which can be seen in the violet coloured high angle reflections. In fact, the angular sensitivity of these diffractive reflection effects can lead to wonderful rainbow reflective colour displays, while some three-dimensional structures such as butterfly wings suppress this angular change; as in the case of the famous blue morphospecies which maintains a largely blue wing colour while flying.In this project, we aim to build three-dimensional repeating structures that can lead to very strong reflection effects while reducing the angular changes normally seen with two-dimensional gratings and mirrors. These 3D periodic materials can effectively reflect light incident from any angle for a particular range of colours (wavelengths) and essentially block light from passing through the material in any direction. These materials are known as photonic bandgap materials because they block a band of colours and because they have properties analogous to the semiconductor bandgaps that block electrons travelling in certain energy bands. Although difficult to fabricate, these materials could exhibit quite striking and useful effects. For instance, blocking all transmission in all directions could be used as protection against bright light (e.g. lasers) or the bandgap could be made sensitive to certain molecular species or pollutants providing a sensing modality. In our team, we have been looking at the light trapping properties of these materials and their effect on light emission. For instance, if a fluorescent dye molecule with emission band entirely within the bandgap is excited inside such an ideal material then it will have no route by which to emit light and remain in its excited state until decaying by a non-radiative route. However, if we create a cavity by removing a small amount of material, the light emission will occur but will be trapped in this cavity until absorbed or leaking through the finite barrier to the edge of the material. Theoretically, these storage times can be very long while the cavity volumes can be made very small which can lead to a strong enhancement of emission and absorption of light by the fluorophore, so-called 'strong coupling' predicted by the full quantum mechanical treatments of the light-matter interaction.Finally, in this project, we will develop reliable techniques to make these 3D light confining materials and exploit their novel properties to trap light in tiny 'cavities' and waveguides thus showing the strongest light-matter interactions possible. These results will have an impact across the board from creating new light sources containing single 'atom' like emitters through to the smallest lasers and materials mimicking the reflectivity of butterfly wings.
在蝴蝶翅膀,甲虫甲壳和墨鱼交配显示器中,自然界中经常看到的虹彩颜色是光的浪潮性质的结果,这些颜色可以显示出对不同颜色的建设性和破坏性干扰效果。我们可以在实验室中重复结构,其中重复周期接近光的波长并看到相似的效果。一个众所周知的例子是来自紧凑型椎间盘的反射,但在抗反射涂层中也可以看到相反的效果,该涂层应用于眼镜,可以在紫罗兰色的高角度反射中看到。实际上,这些衍射反射效应的角度灵敏度会导致出色的彩虹反射颜色显示,而某些三维结构(例如蝴蝶翼)抑制了这种角变化。就像著名的蓝色形态杂种一样,在飞行过程中,它在很大程度上保持了蓝色的机翼颜色。在这个项目中,我们旨在建立三维重复结构,从而导致非常强烈的反射效应,同时减少通常使用二维的光栅和镜子来减少角度变化。这些3D周期材料可以有效地反映出特定颜色范围(波长)的任何角度的光入射,并基本上阻止光线沿任何方向通过材料。这些材料被称为光子带隙材料,因为它们会阻止一条颜色带,并且具有类似于半导体带盖的性能,该半导体带盖阻断了电子在某些能带中行驶的电子。尽管很难制造,但这些材料可能会表现出非常引人注目的有用效果。例如,在所有方向上阻止所有传播都可以用作防止明亮光(例如激光器)的保护,否则带隙可以使其对某些分子物种或提供感应方式的污染物敏感。在我们的团队中,我们一直在研究这些材料的光捕获特性及其对光发射的影响。例如,如果在这样理想的材料中,将具有发射带的荧光染料分子在带隙内激发,那么它将没有途径可以发出光并保持其激发态,直到被非辐射途径衰减。但是,如果我们通过去除少量材料来创建一个空腔,则将发生光发射,但会被困在该腔中,直到被有限的屏障吸收或泄漏到材料边缘。从理论上讲,这些存储时间可能很长,而可以使腔体积很小,这可能会导致荧光团通过荧光团,所谓的“强耦合”所预测的光线互动预测的“强耦合”,从而实现这些材料的范围,我们将在这些材料中启动这些材料,从而使这些材料限制在这些材料上,我们将在范围内启动,从而使这些材料的范围很高,我们将在这些材料中启动3 i d,从而导致荧光团的光线和光的吸收,我们将在范围内进行启发,并限制这些材料的范围。因此,微小的“腔”和波导显示了可能的最强的光 - 物质相互作用。这些结果将产生全面的影响,从创建包含单个“原子”(如发射器)的新光源到模仿蝴蝶翅膀的反射率的最小激光器和材料。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strongly Confining Light with Air-Mode Cavities in Inverse Rod-Connected Diamond Photonic Crystals
反杆连接金刚石光子晶体中空气模腔的强限制光
  • DOI:
    10.3390/cryst12030303
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Taverne M
  • 通讯作者:
    Taverne M
Modified Photonic Band Gap Via Thermal Shrinkage of Two-Photon Polymerized Distributed Bragg Reflectors
通过双光子聚合分布式布拉格反射器的热收缩来修改光子带隙
  • DOI:
    10.1109/cleo/europe-eqec57999.2023.10232036
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Y
  • 通讯作者:
    Chen Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying-Lung HO其他文献

Ying-Lung HO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying-Lung HO', 18)}}的其他基金

Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Research Grant

相似国自然基金

基于第一性原理的动态实验谱图解析辅助纳米催化剂表面活性位点的原位表征
  • 批准号:
    22372185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米复合Nd2Fe14B/α-Fe永磁的磁性能提升技术及原理研究
  • 批准号:
    52371170
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
超高长径比纳米纤维素及其高强纤维材料制备原理及方法
  • 批准号:
    52373104
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米零价双金属还原-纳滤协同控制亚硝胺类副产物性能及界面调控原理
  • 批准号:
    52370004
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极亚波长纳米光栅的激光诱导高效均匀制备原理及技术
  • 批准号:
    52375438
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    ARC Future Fellowships
Van der Waals nanophotonics
范德华纳米光子学
  • 批准号:
    2887484
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Studentship
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了