ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
基本信息
- 批准号:2328540
- 负责人:
- 金额:$ 79.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Classical information technologies use optical interconnects to relay information between different media platforms. This is typically done by fiber optics, relaying digital ones and zeros as pulses with light on and off, respectively. For classical technologies, it is not necessary to precisely control how many photons are emitted or detected, only to be able to distinguish bright from dark. Quantum information technologies require quantum interconnects that can transmit single pairs of entangled photons, which is much more challenging. In this regard, a compact electrically-activated source of single photons would be an important advance. One approach is to utilize single photons emitted from individual Erbium (Er) atoms at standard telecommunication wavelengths. The Er atoms must be embedded into a semiconductor host to enable electrical excitation, and Gallium Arsenide (GaAs) is ideal due to its well-established growth and nanofabrication. However, attaining emission only from the Er atoms, rather than the GaAs host, remains a challenge. One way to improve the rate of photon emission from Er atoms is to embed the atoms into nanocavities. The primary objective of this project is to investigate the application of Er-doped GaAs nanocavity devices for QISE, with the ultimate aim of developing an on-chip electrically-pumped single-photon device operating at telecom wavelengths. This project brings together an expert in Rare Earth (RE) physics for classical optoelectronic applications from West Chester University (WCU) and experts in scalable quantum photonic technologies from the University of Delaware (UD). Additionally, this partnership advances a new 3+2 dual degree program where students earn a bachelor's degree in physics from WCU and a master's degree in QISE from UD in five years. This accelerated educational track is designed to support low-income and underrepresented students, promoting diversity in the QISE workforce while expediting its growth.Technical Abstract: Creating scalable and reliable QISE technologies requires material and device platforms that preserve quantum coherence and provide suitable interactions to produce and control entanglement. Defect-based quantum emitters in wide bandgap semiconductors have emerged as leading candidates for future QISE applications due to their potential for scalability and integration. Rare Earth-doped insulators have been extensively studied because the embedded RE ions have sharp, stable optical transitions and long lifetimes that facilitate high-fidelity quantum control. RE-doped semiconductors, however, have not previously received similar attention for QISE due to the limited availability of samples and challenges associated with competing native defects and background spins. If these challenges can be overcome, the RE-doped semiconductor platform could fill a significant gap for quantum technologies by providing a spectrally-stable electrically-pumped single-photon source, quantum memory, or element of a quantum repeater operating in the telecom C-band. In this approach, single Er ions are coupled to photonic device components, allowing the characterization of Er-doped GaAs as a single-photon source via anti-bunching experiments. These new devices will be achieved through controlled dilute doping and by enhancing the radiative rates of the Er ions using nanophotonic structures. As part of this effort, the growth of Er-doped GaAs at UD and the design and fabrication of new nanophotonic devices incorporating waveguiding and out-coupling schemes for enhanced light-collection efficiency are established.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:经典信息技术使用光学互连来中继不同媒体平台之间的信息。这通常是通过光纤来完成的,分别将数字化的数字和零作为脉冲,分别为启动和关闭。对于古典技术,不必精确地控制发出或检测到多少光子,而只是能够将明亮与黑暗区分开。量子信息技术需要量子互连,以传输单对纠缠的光子,这更具挑战性。在这方面,单个光子的紧凑电动源将是一个重要的进步。一种方法是利用从标准电信波长下从单个Erbium(ER)原子发出的单个光子。 ER原子必须嵌入半导体宿主中以实现电激发,并且由于其建立了良好的生长和纳米化,砷化镜(GAAS)是理想的选择。但是,仅从ER原子而不是GAAS宿主获得排放仍然是一个挑战。提高ER原子光子发射速率的一种方法是将原子嵌入纳米腔。该项目的主要目的是调查掺杂的GAAS纳米腔内设备在QISE中的应用,其最终目的是开发在电信波长下运行的芯片上电动的单光子设备。该项目汇集了西切斯特大学(WCU)的古典光电应用专家(RE)物理学的专家,以及特拉华大学(UD)的可扩展量子光电技术专家。此外,该合作伙伴关系推进了一项新的3+2二学位课程,学生在五年内获得了WCU的物理学学士学位和Qise的硕士学位。这种加速的教育轨道旨在支持低收入和代表性不足的学生,在加快其增长的同时促进Qise劳动力的多样性。技术摘要:创建可扩展可靠的Qise Technologies需要材料和设备平台,以保留量子量子和设备平台,并提供适当的交互作用,以产生和产生和控制范围。基于宽带隙半导体中的基于缺陷的量子发射器已成为未来QISE应用的主要候选者,因为它们具有可伸缩性和集成的潜力。由于嵌入式的离子具有锋利,稳定的光学过渡和较长的寿命,可以促进高保真量子控制,因此对稀土掺杂的绝缘子进行了广泛的研究。然而,由于样本的可用性有限和与竞争的本地缺陷和背景旋转相关的挑战,重新掺杂的半导体以前没有受到类似的关注。如果可以克服这些挑战,则可以通过提供频谱稳定的电气泵式的单光子源,量子存储器,或在电信c频段运行的量子中继器的元素来填补量子技术的显着空白。在这种方法中,单个ER离子与光子设备组件耦合,从而可以通过抗束式实验将ER掺杂的GAA作为单光子源表征。这些新设备将通过受控的稀释掺杂来实现,并使用纳米光子结构提高ER离子的辐射速率。作为这项努力的一部分,建立了新的纳米光子设备的增长,并建立了增强的光收集效率的新纳米光子设备,并建立了以增强光收集效率的耦合方案。该项目由多学科活动办公室共同资助,由多学科活动办公室(MPS/OMA)(MPS/OMA)和技术领域(MISTERTER STATIERS)和TIP/TFER SERSER SERSER SERSER SERSORE SERSFER SERSORESS FERSITS。值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Mitchell其他文献
Development of the Transfer Package for Constraint Induced Cognitive Training: Transferring Cognitive Improvements from the Laboratory to the Real World
- DOI:
10.1016/j.apmr.2020.09.100 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Jason Blake;Brandon Mitchell;Staci McKay;Gitendra Uswatte;Edward Taub - 通讯作者:
Edward Taub
Developing the Shaping Procedures Used with Constraint-Induced Cognitive Training
- DOI:
10.1016/j.apmr.2020.09.107 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Brandon Mitchell;Jason Blake;Staci McKay;Gitendra Uswatte;Edward Taub - 通讯作者:
Edward Taub
First Step Next: A Best-Evidence Synthesis of Replication Randomized Controlled Trials From 2009 to 2021
下一步:2009 年至 2021 年复制随机对照试验的最佳证据综合
- DOI:
10.1177/07419325211068145 - 发表时间:
2022 - 期刊:
- 影响因子:2.4
- 作者:
A. Frey;Jason W. Small;H. Walker;Brandon Mitchell;J. Seeley;Edward G. Feil;Jon Lee;S. Forness - 通讯作者:
S. Forness
高温アニール処理を施したEu,O共添加GaNの光励起・電流注入下における発光特性
高温退火处理的Eu,O共掺GaN在光激发和电流注入下的发光特性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
岩谷孟学;市川修平;Dolf Timmerman;Volkmar Dierolf;Hayley Austin;Brandon Mitchell;舘林潤;藤原康文 - 通讯作者:
藤原康文
Brandon Mitchell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Mitchell', 18)}}的其他基金
Equipment: MRI: Track 1 Acquisition of a Tunable Ultrafast Spectroscopy System at a Primarily Undergraduate Institution to Enhance Undergraduate Training
设备: MRI:第一轨道在本科院校采购可调谐超快光谱系统,以加强本科生培训
- 批准号:
2319135 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications
RUI:用于固态显示的下一代稀土发光体
- 批准号:
2129183 - 财政年份:2021
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
- 批准号:
2028230 - 财政年份:2021
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
RUI: Fate and Impact of CuPro 5000 and Kocide 3000: A Microcosm Based Study
RUI:CuPro 5000 和 Kocide 3000 的命运和影响:基于微观的研究
- 批准号:
1748439 - 财政年份:2018
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
相似国自然基金
基础学科拔尖学生发展及其影响机制的追踪研究
- 批准号:72304231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
- 批准号:32371103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
儿童青少年创造力的异质性发展:一项“基因-环境-脑-行为”框架下的追踪研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
儿童青少年创造力的异质性发展:一项“基因-环境-脑-行为”框架下的追踪研究
- 批准号:32271114
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
大学毕业生入职后政治技能的动态发展及其提升机制:一项多视角的追踪研究
- 批准号:72162023
- 批准年份:2021
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
- 批准号:
2347873 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Innovative chemical microsensor development for in situ, real-time monitoring of priority water pollutants to protect water quality
NSF Convergence Accelerator Track L:创新化学微传感器开发,用于对重点水污染物进行原位实时监测,以保护水质
- 批准号:
2344373 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Aerobiome based genomic surveillance of fungicide resistance to track the development and spread of AMR in plant pathogens and the wider environment
基于空气生物组的杀菌剂抗性基因组监测,以追踪植物病原体和更广泛环境中 AMR 的发展和传播
- 批准号:
MR/Y034023/1 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Research Grant