RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications

RUI:用于固态显示的下一代稀土发光体

基本信息

  • 批准号:
    2129183
  • 负责人:
  • 金额:
    $ 44.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The realization of a "smart society" will require advancements in display and quantum computation technologies. Examples of such technologies include microscale color-tunable pixels and the fabrication of systems whose quantum states can be precisely controlled, both of which can be addressed by "trapping" rare earth (RE) elements in a semiconducting host. RE elements can be placed into various environments and retain most of their original atom-like properties, including emission wavelengths and spin states. Generally, RE ions are incorporated in passive, insulating materials. In this project, a team of researchers will study the properties of RE-doped semiconductors fabricated into structures such as diodes, microcavities, and microdisks. The team will explore new ways to manipulate the RE ions by utilizing the strong interaction between the RE ions and other defects within the semiconductor hosts. Overall, this project will serve as the basis for a new generation of RE-doped semiconductor devices that harness quantum mechanical effects to achieve new functionalities such as the control of spins and the manipulation of light emission for quantum information processing and solid-state displays. Through a collaboration between a predominantly undergraduate institution and two research universities in the greater Philadelphia area, this project will also train several undergraduate and graduate students from underrepresented groups for future employment in the quantum information and display industries.Technical description.Single electrically controlled color-tunable LEDs have been previously demonstrated in Eu-doped GaN, which is based on manipulating the state from which the Eu3+ ions emit. However, several details of the defect-specific energy-transfer pathways are still not fully understood. A deeper understanding of this process is crucial for optimizing such LEDs and for realizing controlled atomic emission in other RE-doped systems. The team will also explore whether spin information can be transferred from injected carriers to the RE ions and vice-versa in novel optoelectronic devices. Measurements of optical transition linewidths, radiative lifetimes, and spin coherence times will establish the baseline potential of RE-doped semiconductors for quantum information protocols. With their high efficiency and narrow emission linewidth, Eu-doped GaN and Er-doped GaAs are promising candidates as single quantum emitters. We aim to detect and address individual RE dopants by controlled dilute doping and enhancing the RE ions' radiative rates using photonic structures. Overall, the development of LEDs with full color-tunability will allow for the realization of single-contact RGB micro-LEDs, which will improve the performance of solid-state lighting technology and enable GaN-based active pixel displays. For quantum computation applications, the combination of robust quantum states based on RE ions with the maturity of GaN and GaAs synthesis and nanofabrication technology can enable the rapid development of scalable quantum optoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“智能社会”的实现将需要在显示和量子计算技术方面的进步。此类技术的例子包括可彩色的像素和可以精确控制量子状态的系统的制造,这两者都可以通过在半导体宿主中“捕获”稀土(RE)元素来解决。可以将元素放入各种环境中,并保留其大多数原子样特性,包括发射波长和自旋状态。通常,将离子纳入被动的绝缘材料中。在这个项目中,一组研究人员将研究被制造为二极管,微腔和微波等结构的重新掺杂半导体的特性。该团队将通过利用REIOS与半导体宿主中的其他缺陷之间的牢固互动来探索操纵Re离子的新方法。总体而言,该项目将成为新一代重新掺杂的半导体设备的基础,该设备利用量子机械效应来实现新功能,例如控制旋转以及对量子信息处理和固态显示的光发射操纵。通过大费城地区主要是本科机构与两所研究大学之间的合作,该项目还将培训来自代表性不足的群体的几个本科生和研究生在量子信息和展示行业中的未来就业。离子发射。但是,仍然尚未完全了解缺陷特异性能量转移途径的几个细节。对这一过程的更深入的了解对于优化此类LED和实现其他重新掺杂系统中受控的原子发射至关重要。该团队还将探索是否可以将旋转信息从注射的载体转移到新型光电设备中的副载体,反之亦然。光学过渡线,辐射寿命和旋转相干时间的测量将确定重新掺杂半导体的基线潜力,以实现量子信息方案。欧盟掺杂的GAN和ER掺杂的GAA凭借其高效率和狭窄的排放线宽,作为单个量子发射器的候选者有希望的候选者。我们旨在通过控制稀释掺杂并使用光子结构来检测和解决单个掺杂剂。总体而言,具有全色功能的LED的开发将允许实现单接触RGB微型LED,这将改善固态照明技术的性能,并启用基于GAN的Active Pixel显示器。 For quantum computation applications, the combination of robust quantum states based on RE ions with the maturity of GaN and GaAs synthesis and nanofabrication technology can enable the rapid development of scalable quantum optoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling defect mediated color-tunability in LEDs with Eu-doped GaN-based active layers
  • DOI:
    10.1063/5.0077223
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    H. Austin;B. Mitchell;D. Timmerman;J. Tatebayashi;S. Ichikawa;Y. Fujiwara;V. Dierolf
  • 通讯作者:
    H. Austin;B. Mitchell;D. Timmerman;J. Tatebayashi;S. Ichikawa;Y. Fujiwara;V. Dierolf
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Mitchell其他文献

Development of the Transfer Package for Constraint Induced Cognitive Training: Transferring Cognitive Improvements from the Laboratory to the Real World
  • DOI:
    10.1016/j.apmr.2020.09.100
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jason Blake;Brandon Mitchell;Staci McKay;Gitendra Uswatte;Edward Taub
  • 通讯作者:
    Edward Taub
Developing the Shaping Procedures Used with Constraint-Induced Cognitive Training
  • DOI:
    10.1016/j.apmr.2020.09.107
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brandon Mitchell;Jason Blake;Staci McKay;Gitendra Uswatte;Edward Taub
  • 通讯作者:
    Edward Taub
First Step Next: A Best-Evidence Synthesis of Replication Randomized Controlled Trials From 2009 to 2021
下一步:2009 年至 2021 年复制随机对照试验的最佳证据综合
  • DOI:
    10.1177/07419325211068145
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Frey;Jason W. Small;H. Walker;Brandon Mitchell;J. Seeley;Edward G. Feil;Jon Lee;S. Forness
  • 通讯作者:
    S. Forness
高温アニール処理を施したEu,O共添加GaNの光励起・電流注入下における発光特性
高温退火处理的Eu,O共掺GaN在光激发和电流注入下的发光特性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岩谷孟学;市川修平;Dolf Timmerman;Volkmar Dierolf;Hayley Austin;Brandon Mitchell;舘林潤;藤原康文
  • 通讯作者:
    藤原康文

Brandon Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Mitchell', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of a Tunable Ultrafast Spectroscopy System at a Primarily Undergraduate Institution to Enhance Undergraduate Training
设备: MRI:第一轨道在本科院校采购可调谐超快光谱系统,以加强本科生培训
  • 批准号:
    2319135
  • 财政年份:
    2023
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
  • 批准号:
    2028230
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI: Fate and Impact of CuPro 5000 and Kocide 3000: A Microcosm Based Study
RUI:CuPro 5000 和 Kocide 3000 的命运和影响:基于微观的研究
  • 批准号:
    1748439
  • 财政年份:
    2018
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
  • 批准号:
    71302093
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RUI: Next-Generation Numerical Relativity for Future Gravitational-Wave Observatories
RUI:未来引力波天文台的下一代数值相对论
  • 批准号:
    2208014
  • 财政年份:
    2022
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI: Development of Next-Generation Drift-Time Ion Mobility Spectrometry through the Application of Pulsed Ionization and Voltage Sweep Methodologies
RUI:通过应用脉冲电离和电压扫描方法开发下一代漂移时间离子淌度光谱法
  • 批准号:
    2203666
  • 财政年份:
    2022
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: CAS: Development of Tripodal Ligands for Next-Generation Rare Earth Element Separations
合作研究 RUI:CAS:开发用于下一代稀土元素分离的三足配体
  • 批准号:
    2102381
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: CAS: Development of Tripodal Ligands for Next-Generation Rare Earth Element Separations
合作研究 RUI:CAS:开发用于下一代稀土元素分离的三足配体
  • 批准号:
    2102576
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
RUI-CHE: Development of Organometallic Complexes for the Next-Generation of Non-Aqueous Redox Flow Batteries
RUI-CHE:开发用于下一代非水氧化还原液流电池的有机金属配合物
  • 批准号:
    2055125
  • 财政年份:
    2021
  • 资助金额:
    $ 44.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了