Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
基本信息
- 批准号:EP/V032003/1
- 负责人:
- 金额:$ 152.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the most amazing results of twentieth century mathematics was the discovery by Alonzo Church and Alan Turing that there are problems in mathematics which cannot be solved, in the sense that there is no algorithm to solve them. This means that no matter how powerful a computer you use to help you, there are some mathematical problems that you will still not be able to solve. If the problem that cannot be solved is in the form of a "yes" or "no" question, then we call it an undecidable problem. On the other hand, if it can be solved, then we say that it is a decidable problem. There are many decision problems that arise naturally in algebra. Important examples include the word problem, which asks us to decide whether two different algebraic expressions are equal to each other, and the membership problem, which asks us to decide whether one element in an algebraic structure can be expressed in terms of another collection of elements. Being able to solve problems like these is important when studying infinite algebraic structures. The main topic of this project is to investigate a range of decision problems like these for three classes of algebraic objects called groups, monoids and inverse semigroups. These three classes arise naturally in the study of symmetry and partial symmetry in mathematics. An important tool for defining infinite groups, monoids and inverse semigroups, is given by the theory of presentations in generators and relations. The idea is that the elements of the group or monoid are represented by strings of letters, called words. We are also given a set of defining relations, which are rules telling us that certain pairs of words are equal to each other. Two words are then equal if one can be transformed into the other by applying the relations. For example, if we use the letters x and y, and we have a single defining relation xy=yx, then the words xyx and yxx are equal since xyx = (xy)x = (yx)x = yxx. On the other hand, the words xy and yy are not equal. The problem of determining whether or not two words are equal to each other is the word problem mentioned above. When we define a monoid or group using a presentation, by increasing the number of relations we can increase the complexity of the monoid or group that we define. If there are no relations these are called free monoids and groups, and because of their simple structure several natural decision problems, like the word problem, can be seen to be decidable in these cases. In contrast, it is known that there are monoids, groups, and inverse semigroups which are defined by finitely many generators and relations, but have undecidable word problem. The situation is the similar for the many other decision problems arising in algebra. It is natural to ask whether groups or monoids which are close to being free, in some sense, will have good algorithmic properties. An important positive result of this kind for groups is Magnus's theorem which shows that groups defined by a single defining relation all have decidable word problem. On the other hand, it was recently discovered that there are inverse monoids defined by a single defining relation that have undecidable word problem. However, it remains an important longstanding open problem whether the word problem is decidable for one-relator monoids. There are many fascinating open problems like this one which ask fundamental questions about where the boundary between decidability and undecidability lies for finitely presented groups, monoids and inverse semigroups. In this project we will explore a range of interrelated problems of this kind. This will be done by developing geometric and topological methods, which use the "shape" of these algebraic objects, or the way they interact with spaces, to shed light on their algorithmic properties.
二十世纪数学最令人惊奇的结果之一是,阿隆佐教堂(Alonzo Church)和艾伦·图宁(Alan Turing)的发现是,数学上存在问题,这是无法解决的,从某种意义上说,没有算法可以解决它们。这意味着,无论您用来帮助您的计算机多么强大,都有一些数学问题仍然无法解决。如果无法解决的问题是以“是”或“否”问题的形式,那么我们将其称为一个不确定的问题。另一方面,如果可以解决,那么我们说这是一个可决定的问题。代数自然出现了许多决策问题。重要示例包括“问题”一词,要求我们确定两个不同的代数表达式是否彼此平等,并且会员问题要求我们决定是否可以用另一个元素来表示代数结构中的一个元素。在研究无限代数结构时,能够解决此类问题很重要。该项目的主要主题是研究三类的代数对象,称为群体,单体和反向半群。这三个类别自然出现在数学中的对称性和部分对称性的研究中。定义无限群,单体和逆半群的重要工具是由发电机和关系中的演示理论给出的。这个想法是,小组或单体的元素由字母字符串表示,称为单词。我们还获得了一组定义关系,这是一个规则,告诉我们某些单词彼此相等。如果一个单词可以通过应用关系转换为另一个单词。例如,如果我们使用字母x和y,并且有一个定义关系xy = yx,则单词xyx和yxx是相等的,因为xyx =(xy)x =(yx)x = yxx。另一方面,xy和yy单词不等。确定两个单词是否彼此相等的问题是上面提到的单词问题。当我们使用演示文稿定义单体或组时,通过增加关系数量,我们可以增加我们定义的单体或组的复杂性。如果没有关系,这些被称为自由的单体和群体,并且由于它们简单的结构,在这些情况下,可以认为几个自然决策问题,例如问题问题,可以看见是可以决定的。相比之下,众所周知,有一个有限的生成器和关系定义的单素,组和反向半群,但有不确定的单词问题。这种情况与代数出现的许多其他决策问题相似。自然要问,从某种意义上说,几乎是自由的小组或单体是否具有良好的算法属性。这类对组的重要积极结果是Magnus的定理,该定理表明,由单个定义关系定义的群体都有可决定的单词问题。另一方面,最近发现有一个由单个定义的关系定义的,这些关系具有不可决定的单词问题。但是,如果单词问题对于单余的单体可以决定,这仍然是一个重要的长期开放问题。像这样的问题有许多有趣的开放问题,这些问题提出了有关有限呈现的群体,单体和反向半群的基本问题的基本问题。在这个项目中,我们将探讨此类相互关联的一系列问题。这将通过开发几何和拓扑方法来完成,这些方法使用这些代数对象的“形状”或与空间相互作用的方式来阐明其算法属性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prefix monoids of groups and right units of special inverse monoids
群的前缀幺半群和特殊逆幺半群的右单位
- DOI:10.1017/fms.2023.99
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dolinka I
- 通讯作者:Dolinka I
Group $\mathcal{H}$-classes of finitely presented special inverse monoids
有限呈现的特殊逆幺半群的$mathcal{H}$类群
- DOI:10.48550/arxiv.2212.04204
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gray R
- 通讯作者:Gray R
Membership problems for positive one-relator groups and one-relation monoids
正单关系群和单关系幺半群的隶属问题
- DOI:10.48550/arxiv.2305.15672
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Foniqi I
- 通讯作者:Foniqi I
ON GROUPS OF UNITS OF SPECIAL AND ONE-RELATOR INVERSE MONOIDS
关于特殊单位和一关系逆幺半群的群
- DOI:10.1017/s1474748023000439
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Gray R
- 通讯作者:Gray R
Subgroups of even Artin groups of FC-type
FC型偶Artin群的子群
- DOI:10.48550/arxiv.2305.17292
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Antolín Y
- 通讯作者:Antolín Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gray其他文献
Once-through cooling on the Columbia River—The best available technology?
- DOI:
10.1016/s0195-9255(82)80026-7 - 发表时间:
1982-03-01 - 期刊:
- 影响因子:
- 作者:
Duane Neitzel;Thomas Page;Robert Gray;Dennis Dauble - 通讯作者:
Dennis Dauble
The changing landscape of axillary surgery: Which breast cancer patients may still benefit from complete axillary lymph node dissection?
腋窝手术不断变化的格局:哪些乳腺癌患者仍可能受益于完整的腋窝淋巴结清扫术?
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
L. Mcghan;A. Dueck;Robert Gray;N. Wasif;A. McCullough;B. Pockaj - 通讯作者:
B. Pockaj
Visual Psychophysics and Physiological Optics Motion Perception and Driving: Predicting Performance Through Testing and Shortening Braking Reaction Times Through Training
视觉心理物理学和生理光学运动感知和驾驶:通过测试预测性能并通过训练缩短制动反应时间
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Luke Wilkins;Robert Gray;J. Gaska;M. Winterbottom - 通讯作者:
M. Winterbottom
OUTCOMES OF SECUNDUM ATRIAL SEPTAL DEFECT CLOSURE WITH THE NEW GORE CARDIOFORM ASD OCCLUDER- RESULTS FROM THE CONTINUED ACCESS GORE ASSURED CLINICAL TRIAL
- DOI:
10.1016/s0735-1097(21)01795-2 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Athar M. Qureshi;Robert Sommer;Gareth Morgan;Robert Gray;Barry Love;Bryan Goldstein;Lissa Sugeng;Matthew Gillespie - 通讯作者:
Matthew Gillespie
Robert Gray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gray', 18)}}的其他基金
Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem
特殊逆幺半群:子群、结构、几何、重写系统和应用题
- 批准号:
EP/N033353/1 - 财政年份:2016
- 资助金额:
$ 152.9万 - 项目类别:
Research Grant
Finiteness Conditions and Index in Semigroups and Monoids
半群和幺半群中的有限性条件和索引
- 批准号:
EP/E043194/1 - 财政年份:2008
- 资助金额:
$ 152.9万 - 项目类别:
Fellowship
Travel Support for a Workshop on Mentoring for Academia
学术界指导研讨会的差旅支持
- 批准号:
0652510 - 财政年份:2007
- 资助金额:
$ 152.9万 - 项目类别:
Standard Grant
RI: Statistical Modeling of Prosodic Features in Speech Technology
RI:语音技术中韵律特征的统计建模
- 批准号:
0710833 - 财政年份:2007
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant
Nomination of Robert M. Gray for the PAESMEM Award
罗伯特·M·格雷 (Robert M. Gray) 提名 PAESMEM 奖
- 批准号:
0227685 - 财政年份:2003
- 资助金额:
$ 152.9万 - 项目类别:
Standard Grant
Quantization for Signal Compression, Classification, and Mixture Modeling
信号压缩、分类和混合建模的量化
- 批准号:
0309701 - 财政年份:2003
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant
Gauss Mixture Quantization for Image Compression and Segmentation
用于图像压缩和分割的高斯混合量化
- 批准号:
0073050 - 财政年份:2000
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant
Compression, Classification and Image Segmentation
压缩、分类和图像分割
- 批准号:
9706284 - 财政年份:1997
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Combined Compression and Classification
美法合作研究:联合压缩和分类
- 批准号:
9603498 - 财政年份:1997
- 资助金额:
$ 152.9万 - 项目类别:
Standard Grant
相似国自然基金
拓扑棱态的微观几何性质及其在非线性光响应中的特征
- 批准号:12374164
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
四维梯度Ricci孤立子的几何与拓扑
- 批准号:12301062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨形方法在拓扑、几何和动力系统中的应用
- 批准号:12371067
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
曲率有下界的流形的几何与拓扑
- 批准号:12371049
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
氧化铪基抗高温CMAS腐蚀防护涂层的几何拓扑仿生结构设计及组织调控
- 批准号:52371044
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 152.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-gap topological physics: from a new geometric perspective to materials
多间隙拓扑物理:从新的几何视角看材料
- 批准号:
EP/X025829/1 - 财政年份:2023
- 资助金额:
$ 152.9万 - 项目类别:
Research Grant
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 152.9万 - 项目类别:
Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
- 批准号:
2237288 - 财政年份:2023
- 资助金额:
$ 152.9万 - 项目类别:
Continuing Grant