Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem
特殊逆幺半群:子群、结构、几何、重写系统和应用题
基本信息
- 批准号:EP/N033353/1
- 负责人:
- 金额:$ 12.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the study of certain fundamental objects in algebra called groups, monoids and inverse monoids. These objects arise naturally in the mathematical study of symmetry and partial symmetry. Given any mathematical structure on a set, the collection of structure-preserving mappings from the set to itself form a monoid, the collection of all symmetries form a group, while the partial symmetries give rise to an inverse monoid. In this way these algebraic objects pervade mathematics. One way to represent a group, monoid of inverse monoid is via a presentation. The elements are represented by strings of letters, called words. We are also given a set of pairs of words, called defining relations, which are rules telling us that certain pairs of words are equal to each other. Then two words are defined to be equal if one can be turned into the other by a sequence of applications of the defining relations. For example, using the alphabet with the letters a and b, and just with a single defining relation ab=ba, the words aba and aab are equal since aba = a(ba) = a(ab) = aab. On the other hand, the words bb and ab are not equal since one cannot be transformed into the other using the relation ab=ba. A famous result in twentieth century mathematics shows that there does not exist, in general, an algorithm to decide whether two words are equal in a monoid defined by a finite presentation. This is known as the word problem, and is also undecidable in general both for finitely presented groups and inverse monoids. These results are important since they were some of the first concrete natural decision problems proven to be undecidable in general. The importance of the word problem is clear: decidability of the word problem for a class of algebras indicates that we have some hope of studying the structural properties of algebras in the class, while undecidability of the word problem would suggest there would likely to be major difficulties in investigating the class as a whole.Given that the word problem is undecidable in general, a lot of research has been done to identify classes of monoids for which the word problem is decidable. One fundamental idea is that by restricting the number of defining relations in the presentation, this should limit the complexity of the object that it defines. An important result of this kind for groups is Magnus's theorem which shows that groups defined by a single defining relation all have decidable word problem. In contrast to this, the following problem remains open:Open problem. Is the word problem decidable for monoids with a single defining relation? This important problem has been open for more than half a century, and is one of the main motivations for our research project. Rather than attacking this problem directly, the project instead aims to develop various aspects of the theory of certain inverse monoids, called special inverse monoids. Specifically the project will develop certain important tools from theoretical computer science, from the area of rewriting systems, to investigate the subgroups, structure, and geometry of these inverse monoids. We will then apply this theory to investigate the word problem for these inverse monoids which will then lead to important results about decidability of the word problem, in general, for monoids defined by a single defining relation. The project will involve extensive collaboration with researchers both from the UK and from universities in Portugal, Serbia and the USA. We will organise a workshop midway through the project, centred around its main themes, which will bring together leading experts from a diverse range of topics in algebra, logic and theoretical computer science.
该项目涉及代数中某些称为群、幺半群和逆幺半群的基本对象的研究。这些物体在对称性和部分对称性的数学研究中自然出现。给定集合上的任何数学结构,从集合到自身的结构保持映射的集合形成幺半群,所有对称性的集合形成群,而部分对称性产生逆幺半群。通过这种方式,这些代数对象遍及数学。表示群、幺半群或反幺半群的一种方法是通过演示。这些元素由称为单词的字母串表示。我们还得到了一组单词对,称为定义关系,这些规则告诉我们某些单词对彼此相等。然后,如果通过一系列定义关系的应用可以将一个单词变成另一个单词,则两个单词被定义为相等。例如,使用带有字母 a 和 b 的字母表,并且仅使用单个定义关系 ab=ba,单词 aba 和 aab 是相等的,因为 aba = a(ba) = a(ab) = aab。另一方面,单词 bb 和 ab 不相等,因为一个不能使用关系 ab=ba 转换为另一个。二十世纪数学中的一个著名结果表明,一般来说,不存在一种算法来确定两个单词在由有限表示定义的幺半群中是否相等。这被称为文字问题,并且对于有限呈现群和逆幺半群来说通常也是不可判定的。这些结果很重要,因为它们是第一个被证明一般情况下不可判定的具体自然决策问题。应用题的重要性是显而易见的:应用题对于一类代数的可判定性表明我们有希望研究该类代数的结构性质,而应用题的不可判定性则表明可能存在重大问题。考虑到词问题一般是不可判定的,人们进行了大量的研究来识别词问题可判定的幺半群类。一个基本思想是,通过限制表示中定义关系的数量,这应该限制其定义的对象的复杂性。对于群来说,这种类型的一个重要结果是马格努斯定理,它表明由单一定义关系定义的群都具有可判定的词问题。与此相反,以下问题仍然悬而未决:开放问题。对于具有单一定义关系的幺半群,这个词问题是否可判定?这个重要的问题已经开放了半个多世纪,也是我们研究项目的主要动机之一。该项目不是直接解决这个问题,而是旨在发展某些逆幺半群理论的各个方面,称为特殊逆幺半群。具体来说,该项目将从理论计算机科学、重写系统领域开发某些重要工具,以研究这些逆幺半群的子群、结构和几何。然后,我们将应用这个理论来研究这些逆幺半群的单词问题,这将导致关于单词问题的可判定性的重要结果,一般来说,对于由单一定义关系定义的幺半群。该项目将涉及与英国以及葡萄牙、塞尔维亚和美国大学的研究人员的广泛合作。我们将在项目中途组织一次研讨会,围绕其主题,汇集来自代数、逻辑和理论计算机科学等不同主题的领先专家。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological finiteness properties of monoids, I: Foundations
幺半群的拓扑有限性,I:基础
- DOI:10.2140/agt.2022.22.3083
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Gray R
- 通讯作者:Gray R
On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids
关于有限完全重写系统、有限推导类型和齐次幺半群的自动性
- DOI:10.1016/j.ic.2017.05.003
- 发表时间:2017
- 期刊:
- 影响因子:1
- 作者:Cain A
- 通讯作者:Cain A
Diagram monoids and Graham-Houghton graphs: Idempotents and generating sets of ideals
- DOI:10.1016/j.jcta.2016.09.001
- 发表时间:2014-04
- 期刊:
- 影响因子:0
- 作者:J. East;R. Gray
- 通讯作者:J. East;R. Gray
Crystal monoids & crystal bases: Rewriting systems and biautomatic structures for plactic monoids of types A, B, C, D, and G2
晶体幺半群
- DOI:10.1016/j.jcta.2018.11.010
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cain A
- 通讯作者:Cain A
Ehresmann theory and partition monoids
- DOI:10.1016/j.jalgebra.2021.02.038
- 发表时间:2020-11
- 期刊:
- 影响因子:0.9
- 作者:J. East;R. Gray
- 通讯作者:J. East;R. Gray
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Gray其他文献
A Refutation of Hume's Theory of Causality
对休谟因果关系理论的反驳
- DOI:
10.1353/hms.1976.a389494 - 发表时间:
1976 - 期刊:
- 影响因子:0
- 作者:
Robert Gray - 通讯作者:
Robert Gray
The Covid-19 shutdown: when studying turns digital, students want more structure
Covid-19 关闭:当学习转向数字化时,学生需要更多的结构
- DOI:
10.1088/1361-6552/ac031e - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Vegard Gjerde;Robert Gray;Bodil Holst;S. D. Kolstø - 通讯作者:
S. D. Kolstø
Vernier step acuity and bisection acuity for texture-defined form
纹理定义形式的游标步进锐度和二分锐度
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:1.8
- 作者:
Robert Gray;David Regan - 通讯作者:
David Regan
The changing landscape of axillary surgery: Which breast cancer patients may still benefit from complete axillary lymph node dissection?
腋窝手术不断变化的格局:哪些乳腺癌患者仍可能受益于完整的腋窝淋巴结清扫术?
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
L. Mcghan;A. Dueck;Robert Gray;N. Wasif;A. McCullough;B. Pockaj - 通讯作者:
B. Pockaj
Robert Gray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Gray', 18)}}的其他基金
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
- 批准号:
EP/V032003/1 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Fellowship
Finiteness Conditions and Index in Semigroups and Monoids
半群和幺半群中的有限性条件和索引
- 批准号:
EP/E043194/1 - 财政年份:2008
- 资助金额:
$ 12.82万 - 项目类别:
Fellowship
Travel Support for a Workshop on Mentoring for Academia
学术界指导研讨会的差旅支持
- 批准号:
0652510 - 财政年份:2007
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
RI: Statistical Modeling of Prosodic Features in Speech Technology
RI:语音技术中韵律特征的统计建模
- 批准号:
0710833 - 财政年份:2007
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Nomination of Robert M. Gray for the PAESMEM Award
罗伯特·M·格雷 (Robert M. Gray) 提名 PAESMEM 奖
- 批准号:
0227685 - 财政年份:2003
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Quantization for Signal Compression, Classification, and Mixture Modeling
信号压缩、分类和混合建模的量化
- 批准号:
0309701 - 财政年份:2003
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Gauss Mixture Quantization for Image Compression and Segmentation
用于图像压缩和分割的高斯混合量化
- 批准号:
0073050 - 财政年份:2000
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Compression, Classification and Image Segmentation
压缩、分类和图像分割
- 批准号:
9706284 - 财政年份:1997
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Combined Compression and Classification
美法合作研究:联合压缩和分类
- 批准号:
9603498 - 财政年份:1997
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
相似国自然基金
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
海马齿状回新生未成熟颗粒神经元活性及Wnt5a/PKC/ERK1/2通路在青少期抑郁中的损伤机制及四逆散干预作用
- 批准号:82305167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于益气温阳理论研究四逆加人参汤通过SIRT1/PGC-1α促进线粒体β-氧化诱导巨噬细胞M2型极化干预慢加急性肝衰竭的分子机制
- 批准号:82305175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于逆Diels-Alder反应的触发式超分子聚合体系研究
- 批准号:22301295
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
逆全球化对高科技企业开放式创新战略及其效用影响研究
- 批准号:72372113
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
頭部・体幹部へ着目した逆動力学による高齢者の転倒回避反応の解析
使用针对头部和躯干的逆动力学分析老年人的跌倒避免反应
- 批准号:
24K14427 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ミクロンスケールにおける重力逆二乗則の破れの探索
寻找微米尺度上违反引力平方反比定律的现象
- 批准号:
23K20851 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
超並列システム向け可逆データ圧縮法の提案と実用化
大规模并行系统可逆数据压缩方法的提出及实际应用
- 批准号:
23K21655 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
逆・磁気線二色性効果を利用した反強磁性デバイスの高度な光制御
利用反/磁二色性效应对反铁磁器件进行先进的光学控制
- 批准号:
23K22805 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
人工相分離構造体による可逆性動的反応場の制御と分子論的理解
使用人工相分离结构控制和分子理解可逆动态反应场
- 批准号:
23K26031 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)