Machine Learning for Tomorrow: Efficient, Flexible, Robust and Automated
面向未来的机器学习:高效、灵活、稳健和自动化
基本信息
- 批准号:EP/T005637/1
- 负责人:
- 金额:$ 208.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence systems have recently led to significant advances in the state-of-the-art in downstream fields including computer vision, speech and natural language processing, and game playing. Although impressive, these advances mask a set of fundamental limitations of the underlying machine learning technology that need to be addressed to unlock gains in a wide variety of applications relevant to industry and society. These limitations come in four main forms. First current approaches are data-inefficient requiring extremely large and painstakingly curated datasets. Second, they are inflexible solving single tasks that are fixed through time. Third, the current approaches are brittle as performance can degrade catastrophically in the face of noise, missing data or adversarially selected data points. Fourth, the approaches are only semi-automated requiring an expert to design and tune them. These limitations mean that many important application domains are currently out of reach. For example, in medicine we typically have only small and noisy datasets which requires data-efficient and robust machine learning. Providing machine learning as a service requires fully-automated machine learning. This Prosperity Partnership will develop machine learning that is data-efficient, robust, flexible and automated by leveraging recently developed technology from the University of Cambridge's Machine Learning Group and deep expertise from Microsoft Research Cambridge. This partnership has identified a unique testbed of impactful application domains: health, enterprise tools and games development. This research programme is central to realising Microsoft's vision to empower every developer, organization and individual to innovate and transform the world with AI. Moreover, this area of immediate and wide-ranging national importance, and provides pathways to impact by partnering with one of the world's largest technology companies.
人工智能系统最近导致了下游领域的最新进步,包括计算机视觉,语音和自然语言处理以及游戏玩法。尽管令人印象深刻,但这些进步掩盖了基础机器学习技术的一系列基本限制,这些局限性需要解决,以解锁与行业和社会有关的广泛应用中的收益。这些限制有四种主要形式。第一种当前方法是数据信息,需要非常大且精心策划的数据集。其次,它们是不灵活的解决单个任务,这些任务是通过时间固定的。第三,当前的方法是脆弱的,因为表现会在噪声,缺少数据或对手选择的数据点时灾难性地降解。第四,这些方法只是半自动化的,需要专家设计和调整它们。这些限制意味着目前许多重要的应用程序域都无法触及。例如,在医学中,我们通常只有小且嘈杂的数据集,需要数据效率和健壮的机器学习。提供机器学习作为服务需要完全自动化的机器学习。这种繁荣合作伙伴关系将通过利用剑桥大学的机器学习组和Microsoft Research Cambridge的深入专业知识来开发数据效率,健壮,灵活和自动化的机器学习。该合作伙伴关系确定了有影响力的应用领域的独特测试:健康,企业工具和游戏开发。该研究计划是实现微软愿景的核心,以增强每个开发人员,组织和个人的能力,以通过AI创新和改变世界。此外,这一领域具有直接和广泛的国家重要性,并通过与世界上最大的技术公司之一合作提供了影响途径。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification
- DOI:10.48550/arxiv.2206.08671
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Aliaksandra Shysheya;J. Bronskill;Massimiliano Patacchiola;Sebastian Nowozin;Richard E. Turner
- 通讯作者:Aliaksandra Shysheya;J. Bronskill;Massimiliano Patacchiola;Sebastian Nowozin;Richard E. Turner
Multi-disciplinary fairness considerations in machine learning for clinical trials
- DOI:10.1145/3531146.3533154
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Chien, Isabel;Deliu, Nina;Kilbertus, Niki
- 通讯作者:Kilbertus, Niki
Memory Efficient Meta-Learning with Large Images
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
- 通讯作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
How Tight Can PAC-Bayes be in the Small Data Regime?
PAC-Bayes 在小数据制度中可以有多严格?
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Foong A.Y.K.
- 通讯作者:Foong A.Y.K.
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
- DOI:10.48550/arxiv.2206.09843
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Massimiliano Patacchiola;J. Bronskill;Aliaksandra Shysheya;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
- 通讯作者:Massimiliano Patacchiola;J. Bronskill;Aliaksandra Shysheya;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Turner其他文献
Minority opinion: CT screening for lung cancer.
少数意见:肺癌CT筛查。
- DOI:
10.1097/01.rti.0000189989.65271.79 - 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
C. Henschke;J. Austin;Nathaniel Berlin;T. Bauer;S. Giunta;Fred Gannis;M. Kalafer;S. Kopel;Albert Miller;H. Pass;H. Roberts;R. Shah;D. Shaham;Michael John Smith;S. Sone;Richard Turner;D. Yankelevitz;J. Zulueta - 通讯作者:
J. Zulueta
The importance of psychological flow in a creative, embodied and enactive psychological therapy approach (Arts for the Blues)
心理流动在创造性、具体化和积极的心理治疗方法中的重要性(蓝调艺术)
- DOI:
10.1080/17432979.2022.2130431 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ailsa Parsons;Linda Dubrow‐Marshall;Richard Turner;S. Thurston;Jennifer S. Starkey;Joanna Omylinska‐Thurston;V. Karkou - 通讯作者:
V. Karkou
Comprehensive studies on building a scalable downstream process for mRNAs to enable mRNA therapeutics
关于构建可扩展的 mRNA 下游流程以实现 mRNA 疗法的综合研究
- DOI:
10.1002/btpr.3301 - 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Tingting Cui;Kareem Fakhfakh;Hannah Turney;Gülin Güler;A. Tołoczko;Martyn Hulley;Richard Turner - 通讯作者:
Richard Turner
Extracting Lineage Information from Hand-Drawn Ancient Maps
从手绘古代地图中提取谱系信息
- DOI:
10.1007/978-3-319-41501-7_30 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ehab Essa;Xianghua Xie;Richard Turner;Matthew Stevens;D. Power - 通讯作者:
D. Power
The New Zealand Reanalysis (NZRA)
新西兰再分析 (NZRA)
- DOI:
10.2307/27226715 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amir Pirooz;S. Moore;T. Carey;Richard Turner;Chun - 通讯作者:
Chun
Richard Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Turner', 18)}}的其他基金
Nanoporous polymer particles and gels containing functionalized semi-rigid copolymer structures
含有官能化半刚性共聚物结构的纳米孔聚合物颗粒和凝胶
- 批准号:
1609379 - 财政年份:2016
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Machine Learning for Hearing Aids: Intelligent Processing and Fitting
助听器机器学习:智能处理和验配
- 批准号:
EP/M026957/1 - 财政年份:2015
- 资助金额:
$ 208.89万 - 项目类别:
Research Grant
Unifying audio signal processing and machine learning: a fundamental framework for machine hearing
统一音频信号处理和机器学习:机器听力的基本框架
- 批准号:
EP/L000776/1 - 财政年份:2013
- 资助金额:
$ 208.89万 - 项目类别:
Research Grant
Sterically Congested and Stiffened Alternating Copolymers: Synthesis, Solution and Solid-State Properties
空间拥挤和硬化交替共聚物:合成、溶液和固态特性
- 批准号:
1206409 - 财政年份:2012
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Probabilistic Auditory Scene Analysis
概率听觉场景分析
- 批准号:
EP/G050821/1 - 财政年份:2010
- 资助金额:
$ 208.89万 - 项目类别:
Fellowship
Precisely Functionalized Alternating Copolymers Based on Substituted Stilbene Monomers
基于取代二苯乙烯单体的精确官能化交替共聚物
- 批准号:
0905231 - 财政年份:2009
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Improvement of Instruction in Marine Ecology
海洋生态学教学的改进
- 批准号:
7814013 - 财政年份:1978
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
相似国自然基金
文本—行人图像跨模态匹配的鲁棒性特征学习及语义对齐研究
- 批准号:62362045
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
- 批准号:42375143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向机器人复杂操作的接触形面和抓取策略共适应学习
- 批准号:52305030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社交媒体中的上市公司谣言识别、后果及治理研究:多模态深度学习视角
- 批准号:72302018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Discovery Projects