Machine Learning for Hearing Aids: Intelligent Processing and Fitting

助听器机器学习:智能处理和验配

基本信息

  • 批准号:
    EP/M026957/1
  • 负责人:
  • 金额:
    $ 72.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Current hearing aids suffer from two major limitations:1) hearing aid audio processing strategies are inflexible and do not adapt sufficiently to the listening environment,2) hearing tests and hearing aid fitting procedures do not allow reliable diagnosis of the underlying nature of the hearing loss and frequently lead to poor fitting of devices.This research programme will use new machine learning methods to revolutionise both of these aspects of hearing aid technology, leading to intelligent hearing devices and testing procedures which actively learn about a patient's hearing loss enabling more personalised fitting. Intelligent audio processingThe optimal audio processing strategy for a hearing aid depends on the acoustic environment. A conversation held in a quiet office, for example, should be processed in a different way from one held in a busy reverberant restaurant. Current high-end hearing aids do switch between a small number of different processing strategies based upon a simple acoustic environment classification system that monitors simple aspects of the incoming audio. However, the classification accuracy is limited, which is one of the reasons why hearing devices perform very poorly in noisy multi-source environments. Future intelligent devices should be able to recognise a far larger and more diverse set of audio environments, possibly using wireless communication with a smart phone. Moreover, the hearing aid should use this information to inform the way the sound is processed in the hearing aid. The purpose of the first arm of the project is to develop algorithms that will facilitate the development of such devices.One of the focuses will be on a class of sounds called audio textures, which are richly structured, but temporally homogeneous signals. Examples include: diners babbling at a restaurant; a train rattling along a track; wind howling through the trees; water running from a tap. Audio textures are often indicative of the environment and they therefore carry valuable information about the scene that could be harnessed by a hearing aid. Moreover, textures often corrupt target signals and their suppression can help the hearing impaired. We will develop efficient texture recognition systems that can identify the noises present in an environment. Then we will design and test bespoke real-time noise reduction strategies that utilise information about the audio textures present in the environment.Intelligent hearing devicesSensorineural hearing loss can be associated with many underlying causes. Within the cochlea there may be dysfunction of the inner hair cells (IHCs) or outer hair cells (OHCs), metabolic disturbance, and structural abnormalities. Ideally, audiologists should fit a patient's hearing aid based on detailed knowledge of the underlying cause of the hearing loss, since this determines the optimal device settings or whether to proceed with the intervention at. Unfortunately, the hearing test employed in current fitting procedures, called the audiogram, is not able to reliably distinguish between many different forms of hearing loss. More sophisticated hearing tests are needed, but it has proven hard to design them. In the second arm of the project we propose a different approach that refines a model of the patient's hearing loss after each stage of the test and uses this to automatically design and select stimuli for the next stage that are particularly informative. These tests will be be fast, accurate and capable of determining the form of the patient's specific underlying dysfunction. The model of a patient's hearing loss will then be used to setup hearing devices in an optimal way, using a mixture of computer simulation and listening test.
目前的助听器存在两大局限性:1) 助听器音频处理策略不灵活,不能充分适应聆听环境,2) 听力测试和助听器验配程序无法对听力损失的根本性质进行可靠诊断该研究计划将使用新的机器学习方法彻底改变助听器技术的这两个方面,从而产生智能听力设备和测试程序,主动了解患者的听力损失情况,从而实现更个性化的验配。智能音频处理助听器的最佳音频处理策略取决于声学环境。例如,在安静的办公室中进行的对话应该以不同于在繁忙的混响餐厅中进行的方式进行处理。当前的高端助听器确实基于简单的声学环境分类系统在少量不同的处理策略之间进行切换,该系统监视传入音频的简单方面。然而,分类精度有限,这也是听力设备在嘈杂的多源环境中表现非常差的原因之一。未来的智能设备应该能够识别更大、更多样化的音频环境,可能会使用与智能手机的无线通信。此外,助听器应该使用该信息来告知助听器中处理声音的方式。该项目第一部分的目的是开发有助于开发此类设备的算法。其中一个重点将是一类称为音频纹理的声音,它们具有丰富的结构,但时间上均匀的信号。例子包括:食客在餐厅里闲聊;火车沿着铁轨嘎嘎作响;风呼啸着穿过树林;水从水龙头流出。音频纹理通常表示环境,因此它们携带了助听器可以利用的有关场景的宝贵信息。此外,纹理经常会破坏目标信号,而抑制它们可以帮助听力受损的人。我们将开发高效的纹理识别系统,可以识别环境中存在的噪音。然后,我们将设计和测试定制的实时降噪策略,该策略利用环境中存在的音频纹理信息。智能听力设备感音神经性听力损失可能与许多潜在原因相关。耳蜗内可能存在内毛细胞 (IHC) 或外毛细胞 (OHC) 功能障碍、代谢紊乱和结构异常。理想情况下,听力学家应根据对听力损失根本原因的详细了解来安装患者的助听器,因为这决定了最佳设备设置或是否继续进行干预。不幸的是,当前验配程序中采用的听力测试(称为听力图)无法可靠地区分许多不同形式的听力损失。需要更复杂的听力测试,但事实证明设计它们很困难。在该项目的第二部分中,我们提出了一种不同的方法,在测试的每个阶段后完善患者听力损失的模型,并使用它来自动设计和选择下一阶段信息特别丰富的刺激。这些测试快速、准确,并且能够确定患者特定的潜在功能障碍的形式。然后,患者的听力损失模型将用于通过计算机模拟和听力测试的结合以最佳方式设置听力设备。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infinite-Horizon Gaussian Processes
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Solin;J. Hensman;Richard E. Turner
  • 通讯作者:
    A. Solin;J. Hensman;Richard E. Turner
TaskNorm: Rethinking Batch Normalization for Meta-Learning
  • DOI:
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bronskill;Jonathan Gordon;James Requeima;Sebastian Nowozin;Richard E. Turner
  • 通讯作者:
    J. Bronskill;Jonathan Gordon;James Requeima;Sebastian Nowozin;Richard E. Turner
Gaussian Process Behaviour in Wide Deep Neural Networks
  • DOI:
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. G. Matthews;Mark Rowland;Jiri Hron;Richard E. Turner;Zoubin Ghahramani
  • 通讯作者:
    A. G. Matthews;Mark Rowland;Jiri Hron;Richard E. Turner;Zoubin Ghahramani
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
  • DOI:
    10.17863/cam.15597
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
  • 通讯作者:
    A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
Deterministic Variational Inference for Robust Bayesian Neural Networks
  • DOI:
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anqi Wu;Sebastian Nowozin;Edward Meeds;Richard E. Turner;José Miguel Hernández-Lobato;Alexander L. Gaunt
  • 通讯作者:
    Anqi Wu;Sebastian Nowozin;Edward Meeds;Richard E. Turner;José Miguel Hernández-Lobato;Alexander L. Gaunt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Turner其他文献

Minority opinion: CT screening for lung cancer.
少数意见:肺癌CT筛查。
  • DOI:
    10.1097/01.rti.0000189989.65271.79
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    C. Henschke;J. Austin;Nathaniel Berlin;T. Bauer;S. Giunta;Fred Gannis;M. Kalafer;S. Kopel;Albert Miller;H. Pass;H. Roberts;R. Shah;D. Shaham;Michael John Smith;S. Sone;Richard Turner;D. Yankelevitz;J. Zulueta
  • 通讯作者:
    J. Zulueta
Extracting Lineage Information from Hand-Drawn Ancient Maps
从手绘古代地图中提取谱系信息
  • DOI:
    10.1007/978-3-319-41501-7_30
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ehab Essa;Xianghua Xie;Richard Turner;Matthew Stevens;D. Power
  • 通讯作者:
    D. Power
The importance of psychological flow in a creative, embodied and enactive psychological therapy approach (Arts for the Blues)
心理流动在创造性、具体化和积极的心理治疗方法中的重要性(蓝调艺术)
  • DOI:
    10.1080/17432979.2022.2130431
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ailsa Parsons;Linda Dubrow‐Marshall;Richard Turner;S. Thurston;Jennifer S. Starkey;Joanna Omylinska‐Thurston;V. Karkou
  • 通讯作者:
    V. Karkou
Comprehensive studies on building a scalable downstream process for mRNAs to enable mRNA therapeutics
关于构建可扩展的 mRNA 下游流程以实现 mRNA 疗法的综合研究
  • DOI:
    10.1002/btpr.3301
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Tingting Cui;Kareem Fakhfakh;Hannah Turney;Gülin Güler;A. Tołoczko;Martyn Hulley;Richard Turner
  • 通讯作者:
    Richard Turner
The New Zealand Reanalysis (NZRA)
新西兰再分析 (NZRA)
  • DOI:
    10.2307/27226715
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Pirooz;S. Moore;T. Carey;Richard Turner;Chun
  • 通讯作者:
    Chun

Richard Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Turner', 18)}}的其他基金

Machine Learning for Tomorrow: Efficient, Flexible, Robust and Automated
面向未来的机器学习:高效、灵活、稳健和自动化
  • 批准号:
    EP/T005637/1
  • 财政年份:
    2020
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Research Grant
Nanoporous polymer particles and gels containing functionalized semi-rigid copolymer structures
含有官能化半刚性共聚物结构的纳米孔聚合物颗粒和凝胶
  • 批准号:
    1609379
  • 财政年份:
    2016
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Standard Grant
Unifying audio signal processing and machine learning: a fundamental framework for machine hearing
统一音频信号处理和机器学习:机器听力的基本框架
  • 批准号:
    EP/L000776/1
  • 财政年份:
    2013
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Research Grant
Sterically Congested and Stiffened Alternating Copolymers:  Synthesis, Solution and Solid-State Properties
空间拥挤和硬化交替共聚物:合成、溶液和固态特性
  • 批准号:
    1206409
  • 财政年份:
    2012
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Standard Grant
Probabilistic Auditory Scene Analysis
概率听觉场景分析
  • 批准号:
    EP/G050821/1
  • 财政年份:
    2010
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Fellowship
Precisely Functionalized Alternating Copolymers Based on Substituted Stilbene Monomers
基于取代二苯乙烯单体的精确官能化交替共聚物
  • 批准号:
    0905231
  • 财政年份:
    2009
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Standard Grant
Improvement of Instruction in Marine Ecology
海洋生态学教学的改进
  • 批准号:
    7814013
  • 财政年份:
    1978
  • 资助金额:
    $ 72.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于渐进式稀疏建模与深度学习的激光吸收光谱层析成像
  • 批准号:
    62371415
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
​基于自监督学习的医学图像质量迁移反问题理论
  • 批准号:
    12301546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 72.04万
  • 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 72.04万
  • 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
  • 批准号:
    10732745
  • 财政年份:
    2023
  • 资助金额:
    $ 72.04万
  • 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
  • 批准号:
    10790269
  • 财政年份:
    2023
  • 资助金额:
    $ 72.04万
  • 项目类别:
Characterization of the Neurobiological Profiles of Young Adults with and without Developmental Language Disorder (DLD)
患有和不患有发育性语言障碍 (DLD) 的年轻人的神经生物学特征的表征
  • 批准号:
    10721464
  • 财政年份:
    2023
  • 资助金额:
    $ 72.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了