HyStorPor - Hydrogen Storage in Porous Media

HyStorPor - 多孔介质中的储氢

基本信息

  • 批准号:
    EP/S027815/1
  • 负责人:
  • 金额:
    $ 142.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Increasing reliance on intermittent renewable electricity sources makes balancing supply to demand difficult. This will become increasingly challenging as the proportion of renewables increases into the future. One solution is the large-scale geological storage of energy in the form of hydrogen. Electricity generation from stored hydrogen can balance summer to winter seasonal energy demands, with the added potential for hydrogen to repurpose the gas grid and replace methane for heating. This is significant as the heating of buildings is currently the largest source of carbon emissions in the UK, exceeding those for electricity generation.However, the underground storage of hydrogen in porous rocks has not yet been demonstrated commercially. This project hence uses state-of-the-art laboratory experiments to address questions which require insight before commercial trials occur, focusing on the geological (underground) storage of hydrogen in geographically-widespread porous rocks. Storage of hydrogen underground is well established in caverns of halite (salt). However, in the UK this type of geology is restricted only to Teesside, Northern Ireland and Cheshire, with long and costly transport to consumers elsewhere. Methane gas in the UK is already stored underground onshore in porous reservoirs and offshore in re-purposed natural gas fields, and that provides insight to operational designs and challenges. The project partners have expertise in hydrocarbon reservoirs, geological assessment of CO2 storage, and compressed air energy storage using porous rocks.WP1 Hydrogen reactivity examines whether the hydrogen could react chemically with the rocks into which it is injected or the overlying seal rock, which could prevent the gas from being recovered and used. Controlled laboratory experiments with hydrogen injection into porous rock at subsurface temperatures and pressures will identify and quantify likely chemical reactions.WP2 Petrophysics assesses how effectively hydrogen migrates through water-filled porous media, and how much of the injected hydrogen can actually be recovered from the rock. Because the rock is made of solid grains with a network of pore spaces between, capillary forces naturally trap some of the hydrogen. How much is trapped affects the commercial viability of the whole process. Laboratory-based experimentation will inject hydrogen into rock samples to help answer this question. CT scanning provides live 3D images of the hydrogen retention in the rock pores.WP3 Flow simulation uses digital computer models of fluid flow adapted from hydrocarbon simulation to scale up from laboratory experiments to an underground storage site. Hydrogen reactive flow properties from WP1 and WP2 will be used to calibrate numerical fluid flow software codes. These models can calculate how efficiently the hydrogen can be injected, and predict how much of the hydrogen can be recovered during operation. Volumes and types of cushion gas to be left in the reservoir as a precaution to maintain operation pressure and minimise water encroachment during withdrawal periods will also be assessed.WP4 Public perception considers how societal familiarity with hydrogen may be much lower compared to natural gas. A key objective of the project is to ascertain at an early stage how citizens and key opinion shapers feel about hydrogen storage underground, and to engage civil society with the research and development process to ensure that hydrogen storage develops in a way that is both technically feasible and socially acceptable.WP5 Project management, industry advisory board, communication and outreach are essential in this type of project. Digital updates will be posted on a dedicated project website and social media channels, with presentations made at academic and industry events. Public project reports and, eventually, peer reviewed publications will provide an open access record of project progress.
对间歇性可再生电力源的依赖越来越依赖,使需求的供应变得平衡。随着可再生能源的比例增加,这将变得越来越具有挑战性。一种解决方案是以氢的形式大规模的能量储存。从储存的氢中发电可以平衡夏季到冬季季节性能量的需求,并增加氢气再利用气电网并取代甲烷进行加热的潜力。这很重要,因为建筑物的加热目前是英国最大的碳排放来源,超过了发电的碳排放。因此,该项目使用最先进的实验室实验来解决需要在商业试验之前进行洞察力的问题,重点是地质(地下)在地理广泛的多孔岩石中储存氢。地下氢的储存已在Halite(盐)的洞穴中得到很好的确定。但是,在英国,这种类型的地质仅限于北爱尔兰和柴郡的Teesside,又有昂贵且昂贵的消费者运输。英国的甲烷天然气已经在陆上的地下存储在多孔的水库和近海中,并在重新塑造的天然气田中存储,这为操作设计和挑战提供了见识。该项目合作伙伴在碳氢化合物储层,二氧化碳存储的地质评估以及使用多孔岩石的压缩空气存储方面具有专业知识。WP1氢反应性检查氢可以与注入的岩石或上覆盖的密封岩相化地反应,从而防止气体被回收和使用。在地下温度和压力下将氢注射到多孔岩石中的受控实验室实验将识别和量化可能的化学反应。WP2石油物理学评估了如何有效地通过水填充的多孔培养基迁移氢,并且实际上可以从岩石中回收多少注射的氢。由于岩石是由固体晶粒制成的,毛细管之间具有孔隙空间的网络,因此毛细管自然会捕获一些氢。被困的多少会影响整个过程的商业生存能力。基于实验室的实验将把氢注入岩石样品中,以帮助回答这个问题。 CT扫描提供了岩石孔中氢保留的实时3D图像。Wp3Flow Simulation使用从碳氢化合物模拟适应的流体流量的数字计算机模型,从实验室实验到地下存储站点进行扩展。 WP1和WP2的氢反应流量特性将用于校准数值流体流量软件代码。这些模型可以计算如何有效地注入氢,并预测在运行过程中可以回收多少氢。还将评估储层中要保留的垫子气体的体积和类型,以预防措施,以维持运行压力并最大程度地减少戒断期间的水分侵占。WP4公众认识考虑到与天然气相比,对社会熟悉的氢气可能如何低得多。该项目的一个关键目的是在早期阶段确定公民和关键意见塑造者对氢存储地下的感觉,并吸引民间社会进行研发过程,以确保以技术上可行且在公路上可接受的方式发展氢气。WP5项目管理,行业咨询委员会,沟通,沟通和推广至关重要。数字更新将发布在专门的项目网站和社交媒体渠道上,并在学术和行业活动中进行了演讲。公共项目报告,最终,同行评审的出版物将提供项目进度的开放访问记录。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK
英国苏格兰米德兰山谷的低碳地球能源资源选择
  • DOI:
    10.1144/sjg2019-007
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Heinemann N
  • 通讯作者:
    Heinemann N
Utilizing publicly available datasets for identifying offshore salt strata and developing salt caverns for hydrogen storage
利用公开的数据集来识别近海盐层并开发用于储氢的盐穴
Hydrogen storage in saline aquifers: The role of cushion gas for injection and production
  • DOI:
    10.1016/j.ijhydene.2021.09.174
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    N. Heinemann;Jonathan Scafidi;G. Pickup;E. Thaysen;A. Hassanpouryouzband;M. Wilkinson;A. Satterley;M. Booth;K. Edlmann;R. S. Haszeldinea
  • 通讯作者:
    N. Heinemann;Jonathan Scafidi;G. Pickup;E. Thaysen;A. Hassanpouryouzband;M. Wilkinson;A. Satterley;M. Booth;K. Edlmann;R. S. Haszeldinea
Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?
  • DOI:
    10.1021/acsenergylett.1c00845
  • 发表时间:
    2021-05-17
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Hassanpouryouzband, Aliakbar;Joonaki, Edris;Haszeldine, R. Stuart
  • 通讯作者:
    Haszeldine, R. Stuart
Geological Hydrogen Storage: Geochemical Reactivity of Hydrogen with Sandstone Reservoirs.
  • DOI:
    10.1021/acsenergylett.2c01024
  • 发表时间:
    2022-07-08
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Hassanpouryouzband, Aliakbar;Adie, Kate;Cowen, Trystan;Thaysen, Eike M.;Heinemann, Niklas;Butler, Ian B.;Wilkinson, Mark;Edlmann, Katriona
  • 通讯作者:
    Edlmann, Katriona
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Haszeldine其他文献

FinanceForFuture: Enforcing a CO2 emitter liability using atmospheric CO2 removal deposits (ACORDs) to finance future negative emissions
FinanceForFuture:利用大气二氧化碳清除押金 (ACORD) 强制履行二氧化碳排放责任,为未来的负排放提供资金
FinanceForFuture: Enforcing a CO<sub>2</sub> emitter liability using atmospheric CO<sub>2</sub> removal deposits (ACORDs) to finance future negative emissions
  • DOI:
    10.1016/j.erss.2023.103356
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anders Lyngfelt;Mathias Fridahl;Stuart Haszeldine
  • 通讯作者:
    Stuart Haszeldine

Stuart Haszeldine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Haszeldine', 18)}}的其他基金

Carbon Capture and Storage: Realising the Potential
碳捕获和封存:发挥潜力
  • 批准号:
    NE/H013474/1
  • 财政年份:
    2010
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS).
量化和监测地质碳储存 (QICS) 的潜在生态系统影响。
  • 批准号:
    NE/H013989/1
  • 财政年份:
    2010
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
UK Carbon Capture and Storage Community Network (UKCCSC)
英国碳捕获和封存社区网络(UKCCSC)
  • 批准号:
    EP/H022961/1
  • 财政年份:
    2009
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
CO2 Aquifer Storage Site Evaluation and Monitoring ( CASSEM )
CO2 含水层封存地点评估和监测 ( CASSEM )
  • 批准号:
    DT/F007744/1
  • 财政年份:
    2008
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中缅边境恶性疟原虫对双氢青蒿素-哌喹的抗药性研究及该地区恶性疟替代治疗方案探索
  • 批准号:
    32360118
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于金属-二维分子筛的木质素自供氢催化解聚脱氧制备单环芳烃机理研究
  • 批准号:
    52306231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热化学反应过程构筑生物炭吸氢结构和强化室温储氢机制
  • 批准号:
    52376103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
预测-决策闭环一体化框架下电氢碳多能流耦合钢铁园区的随机生产调度和网荷互动研究
  • 批准号:
    52377121
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
  • 批准号:
    EP/Y007778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Standard Grant
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了