Investigating non-equilibrium physics and universality using two-dimensional quantum gases

使用二维量子气体研究非平衡物理和普遍性

基本信息

  • 批准号:
    EP/S013105/1
  • 负责人:
  • 金额:
    $ 56.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Systems that are not in equilibrium are ubiquitous but can be complex to describe. Although systems at equilibrium are described with great success by quantum mechanics there is, as yet, no general theoretical framework for how a closed many-body quantum system evolves to such thermalised states. This project investigates the process by which non-equilibrium (NEQ) systems relax towards thermal equilibrium, which we call thermalisation. Macroscopic examples range from the cooling of a cup of coffee to the emergence of structures in the early universe. NEQ processes are also important for quantum systems including quantum computers and quantum heat engines. Our experimental techniques allow many-body quantum systems to be prepared in precisely defined NEQ situations and then track their evolution towards equilibrium in unprecedented level of detail.The system that we will use to gain a better understanding of NEQ physics is a two-dimensional (2D) gas of atoms at temperatures of tens of nanokelvin. The properties of 2D systems are of central importance in physics and part of the Nobel prize for Physics (2016) was awarded to Kosterlitz and Thouless for their work on a phase transition in 2D quantum systems that is named after them. This transition occurs as the quantum gas is cooled and at a certain temperature changes into a superfluid, which flows without friction amongst other fascinating properties. The ultracold atoms are trapped in extremely well-controlled conditions thus enabling us to make definitive quantitative comparisons with theoretical expectations. Quantum systems confined to 2D are especially interesting for studying NEQ processes because the fluctuations, that are an inherent part of quantum mechanics, play a large role in preventing true long-range order. This new method will provide insights into similar phase transitions in other 2D systems such as thin-film superconductors and liquid crystals, and the quantum gas acts as a quantum simulator for 2D quantum physics in general.A cornerstone of this proposal is the double-well potential for ultracold rubidium atoms that we have created recently by an innovative use of combined radio-frequency (RF) and static magnetic fields. This technique is ideally suited for coherent splitting of a 2D quantum gas because the shape and height of the potential are controlled directly by the applied RF fields, thus exploiting the extremely high precision of RF electronics. The rate of splitting determines the energy deposited into the system to produce a chosen initial state. At a predefined time after the splitting, the two clouds are released from the double-well potential so that they expand and overlap. This permits interferometric measurements of the relative phase of the matter waves. From repeated measurements, each with the initial state prepared in the same way, we will be able to determine the probability distribution function (PDF) corresponding to the relative phase of the quantum gas for all positions in the 2D plane. PDFs represent the essence of quantum mechanics and allow a more comprehensive comparison with theoretical models than monitoring the time evolution of the expectation values of certain observables as is commonly done. This cold-atom apparatus acts as a 'quantum simulator' of many-body phases in 2D systems thus providing fresh insights relevant to long-standing research questions.
不平衡的系统无处不在,但描述起来可能很复杂。尽管量子力学对平衡系统的描述取得了巨大成功,但迄今为止,还没有关于封闭多体量子系统如何演化到这种热化状态的通用理论框架。该项目研究非平衡(NEQ)系统松弛至热平衡的过程,我们称之为热化。宏观的例子包括从一杯咖啡的冷却到早期宇宙结构的出现。 NEQ 过程对于包括量子计算机和量子热机在内的量子系统也很重要。我们的实验技术允许在精确定义的 NEQ 情况下准备好多体量子系统,然后以前所未有的详细程度跟踪它们向平衡的演化。我们将用来更好地理解 NEQ 物理的系统是一个二维( 2D)几十纳开温度下的原子气体。二维系统的性质在物理学中至关重要,Kosterlitz 和 Thouless 因在以他们的名字命名的二维量子系统中的相变方面的工作而荣获 2016 年诺贝尔物理学奖。当量子气体冷却并在一定温度下转变为超流体时,就会发生这种转变,超流体的流动没有摩擦以及其他令人着迷的特性。超冷原子被困在极其良好控制的条件下,从而使我们能够与理论预期进行明确的定量比较。仅限于二维的量子系统对于研究 NEQ 过程特别有趣,因为波动是量子力学的固有部分,在阻止真正的长程有序方面发挥着重要作用。这种新方法将为其他二维系统(例如薄膜超导体和液晶)中的类似相变提供见解,并且量子气体通常充当二维量子物理的量子模拟器。该提案的基石是双阱我们最近通过创新地使用射频 (RF) 和静磁场组合创造了超冷铷原子的潜力。该技术非常适合二维量子气体的相干分裂,因为电势的形状和高度直接由所施加的射频场控制,从而利用了射频电子器件的极高精确度。分裂速率决定了沉积到系统中以产生选定初始状态的能量。在分裂后的预定时间,两个云从双阱势中释放,使得它们膨胀并重叠。这允许对物质波的相对相位进行干涉测量。通过重复测量,每次测量都以相同的方式准备初始状态,我们将能够确定与 2D 平面中所有位置的量子气体相对相位相对应的概率分布函数 (PDF)。 PDF 代表了量子力学的本质,并且可以与理论模型进行更全面的比较,而不是像通常那样监控某些可观测值的期望值的时间演化。这种冷原子装置充当二维系统中多体相的“量子模拟器”,从而提供与长期存在的研究问题相关的新见解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Realising a species-selective double well with multiple-radiofrequency-dressed potentials
实现具有多重射频修饰电位的物种选择性双井
Probing multiple-frequency atom-photon interactions with ultracold atoms
  • DOI:
    10.1088/1367-2630/ab2f60
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    K. Luksch;E. Bentine;A. Barker;S. Sunami;T. Harte;Ben Yuen;C J Foot
  • 通讯作者:
    K. Luksch;E. Bentine;A. Barker;S. Sunami;T. Harte;Ben Yuen;C J Foot
Faraday imaging induced squeezing of a double-well Bose-Einstein condensate
法拉第成像诱导双井玻色-爱因斯坦凝聚态的挤压
  • DOI:
    10.48550/arxiv.2104.02382
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ilo-Okeke E
  • 通讯作者:
    Ilo-Okeke E
AtomECS: Simulate laser cooling and magneto-optical traps
AtomECS:模拟激光冷却和磁光陷阱
  • DOI:
    10.48550/arxiv.2105.06447
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
Faraday-imaging-induced squeezing of a double-well Bose-Einstein condensate
  • DOI:
    10.1103/physreva.104.053324
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    E. Ilo-Okeke;S. Sunami;C. Foot;T. Byrnes
  • 通讯作者:
    E. Ilo-Okeke;S. Sunami;C. Foot;T. Byrnes
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Foot其他文献

Christopher Foot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Foot', 18)}}的其他基金

Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
  • 批准号:
    EP/X024601/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
Cold-atom source of strontium for Quantum Technology
用于量子技术的锶冷原子源
  • 批准号:
    EP/Y004175/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION
AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择
  • 批准号:
    ST/W006626/1
  • 财政年份:
    2022
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
Laser and stabilization package for AION
AION 的激光和稳定套件
  • 批准号:
    ST/X004899/1
  • 财政年份:
    2022
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
  • 批准号:
    ST/T006633/1
  • 财政年份:
    2021
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
compact Cold-Atom Sources (cCAS)
紧凑型冷原子源 (cCAS)
  • 批准号:
    EP/R001685/1
  • 财政年份:
    2017
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
  • 批准号:
    EP/J008028/1
  • 财政年份:
    2011
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
Quantum simulation using optical lattices
使用光学晶格的量子模拟
  • 批准号:
    EP/E041612/1
  • 财政年份:
    2007
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant
Direct quantum simulation using cold bosonic atoms in an optical lattice
使用光学晶格中的冷玻色子原子进行直接量子模拟
  • 批准号:
    EP/E010873/1
  • 财政年份:
    2007
  • 资助金额:
    $ 56.41万
  • 项目类别:
    Research Grant

相似国自然基金

热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
  • 批准号:
    52306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非平衡增长理论视角下返乡创业对县域产业升级的影响:作用机理及其实现路径
  • 批准号:
    72373043
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于虚拟动态非平衡级严格模型的反应精馏混合时间松弛优化方法研究
  • 批准号:
    22378304
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
量子液滴体系基于非绝热激发的非平衡相变普适机制研究
  • 批准号:
    12305013
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集群振子体系的自组织动力学与非平衡能动学
  • 批准号:
    12375031
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating how cancer cells maintain redox homeostasis to support biomass production
研究癌细胞如何维持氧化还原稳态以支持生物质生产
  • 批准号:
    10534135
  • 财政年份:
    2022
  • 资助金额:
    $ 56.41万
  • 项目类别:
Investigating how cancer cells maintain redox homeostasis to support biomass production
研究癌细胞如何维持氧化还原稳态以支持生物质生产
  • 批准号:
    10381831
  • 财政年份:
    2022
  • 资助金额:
    $ 56.41万
  • 项目类别:
CRCNS: Investigating Brain Dynamics through the Lens of Statistical Mechanics
CRCNS:通过统计力学的视角研究大脑动力学
  • 批准号:
    10401891
  • 财政年份:
    2020
  • 资助金额:
    $ 56.41万
  • 项目类别:
CRCNS: Investigating Brain Dynamics through the Lens of Statistical Mechanics
CRCNS:通过统计力学的视角研究大脑动力学
  • 批准号:
    10222567
  • 财政年份:
    2020
  • 资助金额:
    $ 56.41万
  • 项目类别:
Investigating Polycystin-2 up-regulation as a stress response through its role in non-alcoholic fatty liver disease
通过其在非酒精性脂肪肝疾病中的作用来研究多囊蛋白 2 的上调作为应激反应
  • 批准号:
    10085572
  • 财政年份:
    2019
  • 资助金额:
    $ 56.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了