Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION

AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择

基本信息

  • 批准号:
    ST/W006626/1
  • 负责人:
  • 金额:
    $ 11.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The technology developed in this programme will enhance atom interferometry in both the Atom Interferometry Observatory Network (AION) and MAGIS-100 projects by developing and implementing clock-laser technology and test of the methodology for very long baseline instruments. The strong scientific motivation for developing a new generation of quantum sensors stems from detailed theoretical work that shows how these instruments will push searches for certain types of dark matter beyond current boundaries and pioneer a new approach to the detection of gravity waves in a different range of frequency from the existing experiments LIGO and Virgo (thus complementing existing approaches). The long-baseline atom interferometers around the world will be networked, and there are many possible synergies through joint observations. Although gravity-wave detection on Earth provides a wealth of new information, much higher sensitivity can be achieved in space and future projects such as the Atomic Experiment for Dark Matter and Gravity Exploration in Space (AEDGE), are already being discussed.The AION instrument combines the advantages of state-of-the-art optical clocks based on Sr atoms with atom interferometry. Two clouds of atoms will be prepared at different heights along a long vertical vacuum pipe, and both clouds will be launched so that they travel upwards before coming to rest and falling back down under gravity. Such 'atomic fountains' allow a long measurement time but atoms must be cooled to temperatures less than 1 nanokelvin otherwise they spread out too much before falling back through the detection region. A vertical laser beam runs through both clouds of atoms, at different heights, so that there is common-mode rejection of noise by differential measurement.Some aspects of the required technology are being developed. In this proposal, we shall develop the narrow bandwidth (few Hz) laser systems required for an interferometer using the narrowest single-photon transition in atomic strontium; the clock transition at (698nm) which is 1000 times narrower than the transition (at 689nm) originally planned for the initial demonstrator of differential interferometry. This electronic and optical technology will be developed as reliable modules for future deployment at the site of large baseline instruments. This represents an important stepping stone towards the AION-10 device. In addition, the narrowness of the clock transition allows extremely precise velocity selection of atoms from a distribution as required for high-contrast fringes from a long interferometer sequences. Furthermore this allows rapid interleaving of interferometry sequences by the sequential selection of different velocity classes from a single transported atom cloud, without repeating the laser cooling and transport processes. This work will be supported by comprehensive simulations using efficient numerical techniques being developed in AION. The AION programme exploits synergies between STFC and EPSRC science and the strategic areas of quantum technology, computing and metrology. It brings together a consortium of experimental and theoretical particle physicists, as well as astrophysicists and instrumentation experts, quantum information scientists, experts in Sr based atomic-clock research, and atomic physicists drawn from the STFC and EPSRC communities. The quantum technologies of AION have potential applications in such varied areas as navigation and oil drilling. We will work closely with the UK Quantum Technologies Hub in sensors and metrology to develop these technologies and bring them to market.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Centralised Design and Production of the Ultra-High Vacuum and Laser-Stabilisation Systems for the AION Ultra-Cold Strontium Laboratories
AION 超冷锶实验室超高真空和激光稳定系统的集中设计和生产
  • DOI:
    10.48550/arxiv.2305.20060
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stray B
  • 通讯作者:
    Stray B
共 1 条
  • 1
前往

Christopher Foot的其他基金

Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
  • 批准号:
    EP/X024601/1
    EP/X024601/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Cold-atom source of strontium for Quantum Technology
用于量子技术的锶冷原子源
  • 批准号:
    EP/Y004175/1
    EP/Y004175/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Laser and stabilization package for AION
AION 的激光和稳定套件
  • 批准号:
    ST/X004899/1
    ST/X004899/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
  • 批准号:
    ST/T006633/1
    ST/T006633/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Investigating non-equilibrium physics and universality using two-dimensional quantum gases
使用二维量子气体研究非平衡物理和普遍性
  • 批准号:
    EP/S013105/1
    EP/S013105/1
  • 财政年份:
    2018
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
compact Cold-Atom Sources (cCAS)
紧凑型冷原子源 (cCAS)
  • 批准号:
    EP/R001685/1
    EP/R001685/1
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
New techniques for nanokelvin condensed matter physics
纳开尔文凝聚态物理新技术
  • 批准号:
    EP/J008028/1
    EP/J008028/1
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Quantum simulation using optical lattices
使用光学晶格的量子模拟
  • 批准号:
    EP/E041612/1
    EP/E041612/1
  • 财政年份:
    2007
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Direct quantum simulation using cold bosonic atoms in an optical lattice
使用光学晶格中的冷玻色子原子进行直接量子模拟
  • 批准号:
    EP/E010873/1
    EP/E010873/1
  • 财政年份:
    2007
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

利用原子干涉法高精度检验弱等效原理
  • 批准号:
    91736311
  • 批准年份:
    2017
  • 资助金额:
    500.0 万元
  • 项目类别:
    重大研究计划
原子干涉法检验洛伦兹对称性的实验研究
  • 批准号:
    91636219
  • 批准年份:
    2016
  • 资助金额:
    360.0 万元
  • 项目类别:
    重大研究计划
基于原子气体吸收谱线多普勒展宽实现玻尔兹曼常数的高精度测定
  • 批准号:
    91536115
  • 批准年份:
    2015
  • 资助金额:
    90.0 万元
  • 项目类别:
    重大研究计划
用非线性波包干涉测量法重构分子波函数
  • 批准号:
    11474178
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目
冷原子干涉法测量万有引力常数G
  • 批准号:
    10875045
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
  • 批准号:
    2885950
    2885950
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Studentship
    Studentship
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
  • 批准号:
    2308767
    2308767
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Standard Grant
    Standard Grant
Robust, Trapped Ultracold Atom Interferometry For Six-axis Inertial Sensing
用于六轴惯性传感的稳健、俘获超冷原子干涉仪
  • 批准号:
    EP/Y004728/1
    EP/Y004728/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Research Grant
    Research Grant
Testing the weak equivalence principle with antimatter via Rydberg-Atom Interferometry
通过里德堡原子干涉仪测试反物质的弱等效原理
  • 批准号:
    2868587
    2868587
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Studentship
    Studentship
Novel Atom Interferometry Techniques
新颖的原子干涉测量技术
  • 批准号:
    2884004
    2884004
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
    Studentship
    Studentship