Ion Transport through Atomically Thin Cap74illaries
通过原子薄帽的离子传输74llaries
基本信息
- 批准号:EP/R013063/1
- 负责人:
- 金额:$ 12.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to study the size effect in ion transport through capillaries with principal dimensions of few angstroms (Å). Ion sieving is of extreme importance in many natural systems (sub-nm ion channels perform important functions in cellular membranes) and in many technologies including desalination, chemical separation, dialysis, bio-analytics, etc. It has so far been only a distant goal to create artificial channels of this size, tune their properties as required and investigate their functioning. Traditionally, zeolites and porous polymer membranes are used for ionic and molecular sieving but the large size distribution and quest for smart membranes has driven the research in this area. Despite all the progress during the last decades, including the use of nanotubes and advanced nanolithography techniques, this goal could not be even approached, with device dimensions rarely reaching the true nanoscale in a limited number of geometries and with a limited number of materials. This is a formidable challenge, but also a central reason to engage in this fascinating area of research and I want to address this challenge by the use of 2D-atomic crystals. 2D-atomic crystals are highly fascinating and offer a route to the fabrication of "devices-by-design" through van der Waals heterostructure assembly with their properties tuned via chosen materials. If individual atomic planes were removed from a bulk crystal leaving behind flat voids of a chosen height; the tiny empty space has so much to offer in terms of manipulation of fluids, liquids, gases, particles and ions.Not only is this a groundbreaking technological advancement of the field of nanofluidics but also importantly the proposed capillaries offer a platform for studying fundamental scientific phenomenon of ionic transport in ultimately confined spaces. The key aims of this proposal are (1) investigation of in-depth intrinsic ion transport through these capillaries, including the role of steric effects, ion entry-exit effects especially when the size of ion is comparable to the capillary size, effect of 'quantum' confinement on the hydration shells surrounding the ions inside capillaries, etc. Such in-depth analysis is possible only because the proposed capillaries are atomically clean and involve little surface charge, unlike the previously studied experimental systems (e.g., nanotubes) dominated by the latter. (2) Gaining insights from the fundamentals of ion transport through these slits, smart capillaries will be constructed where the ions can be manipulated by a perpendicular electric field. The project will be executed at the University of Manchester (UoM) in condensed matter physics group, school of physics which has pioneered graphene/2D-materials research and National Graphene Institute. At the UoM, the graphene group is spread across many schools in the faculty of physics, chemistry, computer science, materials and life sciences, widening the scope of the possible target applications of the smart capillaries and making the project truly interdisciplinary. Our fabrication approach of angstrom-scale capillaries offers a great flexibility, reproducibility and possibility for design and sophisticated engineering, as described in the proposal. In particular, our fabrication procedures provide a new direction for the already exciting large field of nanofluidics but are not limited to only one area. By tackling a core issue i.e., understanding the intrinsic ion transport, alongside overcoming the primary obstacle to exploiting Å-scale confined spaces for size-selective ion separation, my research will impact across a broad range of fields and technologies including desalination, paving the way to future applications of far-reaching social and economic importance.
我建议研究通过毛细血管的离子运输的尺寸效应,其主尺寸很少(Å)。在许多天然系统(子-NM离子通道在细胞膜中都具有重要功能),在许多技术中,离子筛分非常重要,包括脱盐,化学分离,透析,生物分析学等许多技术。到目前为止,它只是一个遥远的目标,就是一个遥远的目标,是创建这种大小的人造渠道,并将其构成所需的人造属性,并根据需要并调查其功能。传统上,沸石和多孔聚合物膜用于离子和分子筛分,但大尺寸的分布和对智能膜的追求使该领域的研究推动了这一研究。尽管在过去的几十年中取得了所有进展,包括使用纳米管和高级纳米见解技术,但无法实现此目标,设备尺寸很少在有限的几何形状中达到真正的纳米级,并且材料数量有限。这是一个巨大的挑战,也是参与这一引人入胜的研究领域的核心原因,我想通过使用2D原子晶体来应对这一挑战。 2D原子晶体非常着迷,并通过Van der waals异质结构组件提供了通往“设备设计”织物的途径,其特性通过所选材料调节。如果将单个原子平面从散装晶体中取出,留下了选择高度的平坦空隙;在操纵液体,液体,气体,颗粒和离子方面,很小的空白空间可以提供很多东西。这不仅是纳米流体领域的突破性技术进步,而且还重要的是,提议的毛细血管提供了一个研究平台,用于研究基本科学现象的最终限制空间的基本科学现象。该提案的关键目的是(1)调查通过这些毛细血管通过这些毛细血管的深入内部离子运输,包括空间效应的作用,离子入门效果,尤其是当离子的大小与毛细管尺寸相当,与毛细管的尺寸相当,即“量子”的效果,“量子”的效果,“毫无疑问的毛细管毛细管的水合壳”。与先前研究的实验系统(例如,纳米管)不同,电荷是由后者主导的。 (2)从这些缝隙中从离子传输的基本面中获得见解,将建造智能毛细血管,在离子可以通过垂直电场操纵的地方。该项目将在曼彻斯特大学(UOM)的凝聚态物理小组,物理学学院执行,该学院已经开创了石墨烯/2D-材料研究和国家石墨烯研究所。在UOM,石墨烯组分布在物理,化学,计算机科学,材料和生命科学学院的许多学校中,扩大了智能毛细管的可能目标应用的范围,并使项目真正跨学科。如提案中所述,我们的Angstrom尺度毛细血管制造方法为设计和复杂的工程提供了极大的灵活性,可重复性和可能性。特别是,我们的制造程序为已经令人兴奋的大型纳米流体学领域提供了一个新的方向,但不仅限于一个区域。通过解决一个核心问题,即了解固有的离子运输,并克服了利用Å级限制空间进行尺寸选择性离子分离的主要障碍,我的研究将影响在包括脱水的广泛领域和技术上,铺平了铺平的方式,为未来的遥远社会和经济重要性提供了应用方式。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Water friction in nanofluidic channels made from two-dimensional crystals.
- DOI:10.1038/s41467-021-23325-3
- 发表时间:2021-05-25
- 期刊:
- 影响因子:16.6
- 作者:Keerthi A;Goutham S;You Y;Iamprasertkun P;Dryfe RAW;Geim AK;Radha B
- 通讯作者:Radha B
Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water
- DOI:10.1063/1.5037992
- 发表时间:2018-08-20
- 期刊:
- 影响因子:4
- 作者:Neek-Amal, M.;Lohrasebi, A.;Peeters, F. M.
- 通讯作者:Peeters, F. M.
Gas flow through atomic-scale apertures
- DOI:10.1126/sciadv.abc7927
- 发表时间:2020-12-01
- 期刊:
- 影响因子:13.6
- 作者:Thiruraman, Jothi Priyanka;Dar, Sidra Abbas;Radha, Boya
- 通讯作者:Radha, Boya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radha Boya其他文献
2004 ACM Symposium on Applied Computing An Optimized Approach for KNN Text Categorization using P-trees
2004 ACM 应用计算研讨会使用 P 树进行 KNN 文本分类的优化方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Daniel J Eichelsdoerfer;K. A. Brown;Radha Boya;W. Shim;C. Mirkin - 通讯作者:
C. Mirkin
Radha Boya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radha Boya', 18)}}的其他基金
FLUXIONIC: Controlled transport of water and ions in nanoconfinement
FLUXIONIC:纳米限制中水和离子的受控传输
- 批准号:
EP/Y031156/1 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
Nano manufacturing of ultrathin membranes
超薄膜的纳米制造
- 批准号:
EP/X019225/1 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
High Resolution Unconventional Lithography for Advanced Materials
用于先进材料的高分辨率非常规光刻
- 批准号:
EP/W006502/1 - 财政年份:2022
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
相似国自然基金
WASH1通过调节LCK由内体向细胞膜运输控制T-ALL细胞生存的作用机制研究
- 批准号:82300195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF18B通过形成KIF18B-MFN1-CYLD蛋白复合物加速线粒体沿微管运输并激活一碳代谢促进NPC转移的机制研究
- 批准号:82203799
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIF18B通过形成KIF18B-MFN1-CYLD蛋白复合物加速线粒体沿微管运输并激活一碳代谢促进NPC转移的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FMRP蛋白通过调控RNP颗粒形成及运输影响脆性X染色体综合征神经元兴奋性的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FMRP蛋白通过调控RNP颗粒形成及运输影响脆性X染色体综合征神经元兴奋性的机制研究
- 批准号:32100769
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Lipid-polymer membranes: understanding ion transport through hybrid materials at the nanoscale
脂质聚合物膜:了解纳米级混合材料中的离子传输
- 批准号:
2219305 - 财政年份:2022
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
Mechanosensitive ion transport through hexagonal boron nitride nanopores
通过六方氮化硼纳米孔的机械敏感离子传输
- 批准号:
2110924 - 财政年份:2021
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
Development of novel electrodeposition system through ion transport using solid polyelectrolyte membrane
使用固体聚电解质膜通过离子传输开发新型电沉积系统
- 批准号:
20H02487 - 财政年份:2020
- 资助金额:
$ 12.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
- 批准号:
1904453 - 财政年份:2019
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant