ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
基本信息
- 批准号:EP/X025381/1
- 负责人:
- 金额:$ 42.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrated photonics has developed by leaps and bounds over the past decade and has seen widespread application far beyond the originally envisioned domain of telecommunications. For instance, the recent funding rounds raised by photonics startups Lightmatter and PsiQuantum, point to the fact that integrated photonics is expected to play a key role in the development of hardware for both artificial intelligence and quantum computing.In spite of all this progress and promise, there is one key problem that has remained unaddressed. For photonics to realise its promise, both in terms of scale and energy efficiency, it requires the use of high quality factor resonators, devices in which light can circulate for long periods with low-loss. While there has been great progress in reducing the propagation loss in photonic devices, the inherent fabrication variation present even in state of the art foundry processes, makes it impossible to design nominally identical devices for implementing any given function. This means that some method for post fabrication compensation and tuning must be utilised. While several such approaches for tuning currently exist, all of them either require large steady state energy consumption (thermal tuning) or large on-chip footprint (MEMS tuning). What is ideally needed is a mechanism that allows a resonator's frequency to be tuned post-fabrication where the tuning mechanism is both small footprint and efficient (zero static energy dissipation). This project is designed to address this goal by exploiting mechanically bistable structures that can be flipped between two stable states to induce the tuning. We will develop switchable, digital (step-by-step), nonvolatile (no static power dissipation) micromechanical tuning elements for adjusting the resonant wavelength of integrated photonic resonators after fabrication. These tuning elements will be selectively and permanently switched to digitally tune resonators into alignment with each other, eliminating the need to apply a persistent, resonator-specific tuning to compensate for fabrication variations. We will demonstrate that these mechanically bistable elements can be designed and fabricated in a state of the art foundry process, and also show the stability of operation from room temperature down to 4K. Our main goal is to show that by using this tuning method, we can reduce the 'effective' fabrication variation by ~10x, and enable a new generation of integrated photonic devices, designed around high-Q resonators.
集成光子学在过去十年中取得了突飞猛进的发展,其广泛的应用远远超出了最初设想的电信领域。例如,光子学初创公司 Lightmatter 和 PsiQuantum 最近筹集的几轮融资表明,集成光子学预计将在人工智能和量子计算硬件的开发中发挥关键作用。尽管取得了所有这些进展和前景,有一个关键问题尚未解决。为了实现光子学在规模和能源效率方面的承诺,它需要使用高品质因数谐振器,即光可以在其中长时间低损耗循环的设备。虽然在降低光子器件的传播损耗方面已经取得了巨大进展,但即使在最先进的铸造工艺中也存在固有的制造变化,使得设计名义上相同的器件来实现任何给定的功能是不可能的。这意味着必须使用某种制造后补偿和调整的方法。虽然目前存在几种这样的调谐方法,但所有这些方法要么需要大量的稳态能耗(热调谐),要么需要大量的片上占用空间(MEMS 调谐)。理想地需要的是一种允许在制造后调谐谐振器频率的机制,其中该调谐机制既占地面积小又高效(零静态能量耗散)。该项目旨在通过利用机械双稳态结构来实现这一目标,该结构可以在两个稳定状态之间翻转以引起调谐。我们将开发可切换、数字(逐步)、非易失性(无静态功耗)微机械调谐元件,用于在制造后调整集成光子谐振器的谐振波长。这些调谐元件将有选择地、永久地切换,以数字方式将谐振器调谐到彼此对准,从而无需应用持久的、特定于谐振器的调谐来补偿制造变化。我们将证明这些机械双稳态元件可以在最先进的铸造工艺中设计和制造,并展示从室温到 4K 的运行稳定性。我们的主要目标是证明,通过使用这种调谐方法,我们可以将“有效”制造变化减少约 10 倍,并实现围绕高 Q 谐振器设计的新一代集成光子器件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Coimbatore Balram其他文献
Krishna Coimbatore Balram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Coimbatore Balram', 18)}}的其他基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
Next generation Acoustic Wave Filter Platform
下一代声波滤波器平台
- 批准号:
EP/W035359/1 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
- 批准号:
EP/W006685/1 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
- 批准号:
EP/V005286/1 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
- 批准号:
EP/V048856/1 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
GASP: Gallium Arsenide (III-V) photonic integrated circuits built like Silicon Photonics
GASP:砷化镓 (III-V) 光子集成电路,类似于硅光子学
- 批准号:
EP/V052179/1 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
相似海外基金
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
CHAI - EPSRC AI Hub for Causality in Healthcare AI with Real Data
CHAI - EPSRC AI 中心,利用真实数据研究医疗保健 AI 中的因果关系
- 批准号:
EP/Y028856/1 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
- 批准号:
EP/X036901/1 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 42.42万 - 项目类别:
Research Grant