Optimal transport and geometric analysis
最佳传输和几何分析
基本信息
- 批准号:EP/R004730/2
- 负责人:
- 金额:$ 2.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of study of differential geometry are smooth manifolds, which correspond to smooth curved objects of finite dimension.In modern differential geometry, it is becoming more and more common to consider sequences (or flows) of smooth manifolds. Typically the limits of such sequences (or flows) are non smooth anymore. It is then useful to isolate a natural class of non smooth objects which generalize the classical notion of smooth manifold, and which is closed under the process of taking limits.If the sequence of manifolds satisfy a lower bound on the sectional curvatures, a natural class of non-smooth objects which is closed under (Gromov-Hausdorff) convergence is given by special metric spaces known as Alexandrov spaces; if instead the sequence of manifolds satisfy a lower bound on the Ricci curvatures, a natural class of non-smooth objects, closed under (measured Gromov-Hausdorff) convergence, is given by special metric measure spaces (i.e. metric spaces endowed with a reference volume measure) known as RCD(K,N) spaces. These are a 'Riemannian' refinement of the so called CD(K,N) spaces of Lott-Sturm-Villani, which are metric measure spaces with Ricci curvature bounded below by K and dimension bounded above by N in a synthetic sense via optimal transport.In the proposed project we aim to understand in more detail the structure, the analytic and the geometric properties of RCD(K,N) spaces. The new results will have an impact also on the classical world of smooth manifolds satisfying curvature bounds.
差异几何形状的研究主题是平滑的歧管,它们对应于有限维度的平滑曲面对象。在现代微分几何形状中,考虑平滑歧管的序列(或流)越来越普遍。通常,此类序列(或流)的极限不再平滑。然后,隔离一类自然的非平滑物体,从而在限制限制的过程中封闭了经典的概念,如果歧管的顺序满足了截面曲率的下限,则在截面曲率上满足,这是一种自然的非平滑物体,它是通过(Gromov-hausdorff)封闭的(Gromov-hausdorff)被特殊的alexcand clemencand clemencand clemencand clemencand clemencand clesecand clesecand clemencand clemencand clemencand clemencand。相反,如果歧管的序列满足RICCI曲率上的下限,则一类天然的非平滑物体(测量的Gromov-Hausdorff)收敛下封闭的非平滑物体,由特殊的度量测量空间(即具有参考体积度量)的特殊度量度量空间(即称为RCD(K,N)空间)给出。 These are a 'Riemannian' refinement of the so called CD(K,N) spaces of Lott-Sturm-Villani, which are metric measure spaces with Ricci curvature bounded below by K and dimension bounded above by N in a synthetic sense via optimal transport.In the proposed project we aim to understand in more detail the structure, the analytic and the geometric properties of RCD(K,N) spaces.新结果也将对满足曲率界限的平滑流形的古典世界产生影响。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy-Transport distances between unbalanced metric measure spaces
- DOI:10.1007/s00440-022-01159-4
- 发表时间:2020-09
- 期刊:
- 影响因子:2
- 作者:Nicolò De Ponti;Andrea Mondino
- 通讯作者:Nicolò De Ponti;Andrea Mondino
Polya-Szego inequality and Dirichlet p-spectral gap for non-smooth spaces with Ricci curvature bounded below
- DOI:10.1016/j.matpur.2019.10.005
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Andrea Mondino;Daniele Semola
- 通讯作者:Andrea Mondino;Daniele Semola
Existence and Regularity of Spheres Minimising the Canham-Helfrich Energy
最小化 Canham-Helfrich 能量的球体的存在性和规律性
- DOI:10.1007/s00205-020-01497-4
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Mondino A
- 通讯作者:Mondino A
NEW FORMULAS FOR THE LAPLACIAN OF DISTANCE FUNCTIONS AND APPLICATIONS
- DOI:10.2140/apde.2020.13.2091
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.2
- 作者:Cavalletti, Fabio;Mondino, Andrea
- 通讯作者:Mondino, Andrea
Foliation by Area-constrained Willmore Spheres Near a Nondegenerate Critical Point of the Scalar Curvature
标量曲率非简并临界点附近区域约束威尔莫尔球体的叶理化
- DOI:10.1093/imrn/rny203
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Ikoma N
- 通讯作者:Ikoma N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Mondino其他文献
Homotopy properties of horizontal loop spaces and applications to closed sub-Riemannian geodesics
水平环空间的同伦性质及其在闭合亚黎曼测地线中的应用
- DOI:
10.1090/btran/33 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Lerário;Andrea Mondino - 通讯作者:
Andrea Mondino
Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions
Ricci 或标量曲率条件下非紧黎曼流形中等周区域的存在性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrea Mondino;S. Nardulli - 通讯作者:
S. Nardulli
Global Conformal Invariants of Submanifolds
子流形的全局共形不变量
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Andrea Mondino;H. Nguyen - 通讯作者:
H. Nguyen
Angles between Curves in Metric Measure Spaces
公制测量空间中曲线之间的角度
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
B. Han;Andrea Mondino - 通讯作者:
Andrea Mondino
A Talenti-type comparison theorem for RCD(K,N)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${{,mathrm{RCD},}}(K,N
RCD(K,N)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs 的 Talenti 型比较定理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.1
- 作者:
Andrea Mondino;Mattia Vedovato - 通讯作者:
Mattia Vedovato
Andrea Mondino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Mondino', 18)}}的其他基金
Optimal transport and geometric analysis
最佳传输和几何分析
- 批准号:
EP/R004730/1 - 财政年份:2018
- 资助金额:
$ 2.13万 - 项目类别:
Research Grant
相似国自然基金
囊泡运输相关蛋白FAM91A1与TBC1D23突变引起脑桥小脑发育不全症的机制
- 批准号:32300578
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苹果砧木miRLn47砧穗间运输调控耐盐性机制研究
- 批准号:32302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数据驱动的集装箱甩挂运输问题研究
- 批准号:72372087
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
无人码头场景下集装箱运输车自动驾驶关键理论与技术
- 批准号:62333017
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
相似海外基金
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 2.13万 - 项目类别:
Continuing Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Standard Grant