A Reconstruction Toolkit for Multichannel CT

多通道 CT 重建工具包

基本信息

  • 批准号:
    EP/P02226X/1
  • 负责人:
  • 金额:
    $ 64.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Currently, conventional Computed Tomographic (CT) imaging is still in a black and white (1 channel) era, just as it was with the first image Rontgen captured in 1895! Conventional X-ray imaging entails a polychromatic X-ray source (i.e. with a full spectrum of energies) but with energy-indiscriminate detectors (registering a single grey-scale channel). However, technological breakthroughs in energy-sensitive detectors enable a new era of tomographic imaging in 'colours' (multiple channels). Each pixel of the energy-selective detector records a spectrum consisting of hundreds or thousands of energy channels. Currently available software only allows us to reconstruct each (noisy) channel independently in turn, which is a significant limitation. We need to unlock the power of next-generation correlative reconstruction methods for multi-channel tomography. Notably, the registered energy channels are mutually correlated, just like the red-green-blue (RGB) channels of the color image. Therefore, noise and other inaccuracies in spectral measurements can be treated holistically across the channels, leading to massive improvements in imaging quality (higher signal-to-noise ratio and resolution) in addition to fundamentally new opportunities such as spectroscopic imaging, i.e., direct decomposition into fundamental elements. The overall goal of this CCP Software Flagship project is to expand upon existing single-channel image reconstruction software (already developed by the CCPi project) to enable sophisticated multi-channel correlative reconstruction methods. A novel Reconstruction Toolkit for Multichannel CT (RT-MCT) will be developed and become a part of the end-user data pipeline Savu (a modular Python-based platform for tomographic data processing developed at Diamond Light Source (DLS) at Harwell, UK). Three major imaging facilities are key collaborators and committed initial users of the RT-MCT: 1) Manchester X-ray Imaging Facility (MXIF) is a leader of laboratory-based X-ray CT imaging and has developed the unique multi-channel instrument "The Colour Bay" (cone-beam geometry scanner which uses HEXITEC hyper-spectral detectors); 2) A new national Neutron Imaging and Diffraction Facility (IMAT) at the ISIS pulsed neutron spallation source (Harwell). IMAT will take advantage of the neutron time-of-flight (TOF) measurement technique for effective energy discrimination into thousands of channels making this unique technique hyper-spectral; 3) Diamond Light Source (DLS), the national synchrotron facility at Harwell, has a number of imaging beamlines including I18 and I14, dedicated to X-ray fluorescence, X-ray spectroscopy and diffraction, all of which entail multi-channel data sets.The main aim is to deliver the RT-MCT to these facilities to provide much more efficient data reconstruction and analysis. Several work packages are identified which constitute the RT-MCT, namely a) accurate mathematical modelling of multi-channel imaging; b) formulation of optimal reconstruction problems; c) efficient algorithm implementation and integration in existing software framework; d) deployment to facilities and use in proof-of-concept case studies.
目前,传统的计算机断层扫描 (CT) 成像仍处于黑白(单通道)时代,就像伦琴在 1895 年拍摄的第一张图像一样!传统的 X 射线成像需要多色 X 射线源(即具有全谱能量),但具有不区分能量的探测器(记录单个灰度通道)。然而,能量敏感探测器的技术突破开启了“彩色”(多通道)断层成像的新时代。能量选择性探测器的每个像素记录由数百或数千个能量通道组成的光谱。目前可用的软件只允许我们依次独立地重建每个(有噪声的)通道,这是一个很大的限制。我们需要释放下一代多通道断层扫描相关重建方法的力量。值得注意的是,注册的能量通道是相互关联的,就像彩色图像的红绿蓝(RGB)通道一样。因此,可以在整个通道中全面处理光谱测量中的噪声和其他不准确性,从而除了光谱成像(即直接分解)等全新机会外,还可以大幅提高成像质量(更高的信噪比和分辨率)转化为基本要素。该 CCP 软件旗舰项目的总体目标是扩展现有的单通道图像重建软件(已由 CCPi 项目开发),以实现复杂的多通道相关重建方法。将开发一种新颖的多通道 CT 重建工具包 (RT-MCT),并成为最终用户数据管道 Savu 的一部分(一个基于 Python 的模块化断层扫描数据处理平台,由英国哈韦尔的 Diamond Light Source (DLS) 开发) )。三个主要成像机构是 RT-MCT 的关键合作者和忠实的初始用户: 1) 曼彻斯特 X 射线成像机构 (MXIF) 是基于实验室的 X 射线 CT 成像的领导者,并开发了独特的多通道仪器“ Color Bay”(使用 HEXITEC 高光谱探测器的锥束几何扫描仪); 2) 位于 ISIS 脉冲中子散裂源(哈威尔)的新国家中子成像和衍射设施 (IMAT)。 IMAT 将利用中子飞行时间 (TOF) 测量技术对数千个通道进行有效的能量区分,从而使这种独特的技术成为高光谱; 3) 哈韦尔国家同步加速器设施钻石光源 (DLS) 拥有许多成像光束线,包括 I18 和 I14,专用于 X 射线荧光、X 射线光谱和衍射,所有这些都需要多通道数据集主要目标是将 RT-MCT 交付给这些设施,以提供更有效的数据重建和分析。确定了构成 RT-MCT 的几个工作包,即 a) 多通道成像的精确数学建模; b) 最优重建问题的表述; c) 现有软件框架中的高效算法实现和集成; d) 部署到设施并在概念验证案例研究中使用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data
分析任意不完整 X 射线 CT 数据的重建伪影
  • DOI:
    10.1137/18m1166833
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Borg, Leise;Frikel, Jürgen;Jørgensen, Jakob Sauer;Quinto, Eric Todd
  • 通讯作者:
    Quinto, Eric Todd
Nonlinear problems in fast tomography
快速断层扫描中的非线性问题
  • DOI:
    10.1117/12.2275194
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Coban S
  • 通讯作者:
    Coban S
Crystalline phase discriminating neutron tomography using advanced reconstruction methods
  • DOI:
    10.1088/1361-6463/ac02f9
  • 发表时间:
    2021-08-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ametova, Evelina;Burca, Genoveva;Withers, Philip J.
  • 通讯作者:
    Withers, Philip J.
Charting the course towards dimensional measurement traceability by x-ray computed tomography
  • DOI:
    10.1088/1361-6501/abf058
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ferrucci, Massimiliano;Ametova, Evelina
  • 通讯作者:
    Ametova, Evelina
Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner
  • DOI:
    10.1088/1361-6501/aafcae
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fisher, S. L.;Holmes, D. J.;Withers, P. J.
  • 通讯作者:
    Withers, P. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Withers其他文献

Dependence of dielectric behavior in BiFeO3 ceramics on intrinsic defects
BiFeO3 陶瓷介电行为对固有缺陷的依赖性
  • DOI:
    10.1016/j.jallcom.2012.06.110
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Hua Ke;Wen Wang;Yuanbin Wang;Hongjun Zhang;Dechang Jia;Yu Zhou;Xuekun Lu;Philip Withers
  • 通讯作者:
    Philip Withers

Philip Withers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Withers', 18)}}的其他基金

RELIANCE: REaL-tIme characterization of ANisotropic Carbon-based tEchnological fibres, films and composites
可靠性:各向异性碳基技术纤维、薄膜和复合材料的实时表征
  • 批准号:
    EP/X026884/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Manufacturing by Design
设计制造
  • 批准号:
    EP/W003333/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Henry Royce Institute Core Capital Award
亨利·莱斯研究所核心资本奖
  • 批准号:
    EP/X52850X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Royce Phase 2
罗伊斯二期
  • 批准号:
    EP/X527257/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Tomographic Imaging: UK Collaborative Computational Projects
断层成像:英国协作计算项目
  • 批准号:
    EP/T026677/1
  • 财政年份:
    2020
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
The Royce: Capitalising on the investment
罗伊斯:利用投资
  • 批准号:
    EP/S019367/1
  • 财政年份:
    2018
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Preventing Surface Degradation in Demanding Environments
防止严苛环境中的表面退化
  • 批准号:
    EP/R00496X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Sir Henry Royce InsStitute - recurrent grant
亨利·莱斯爵士学院 - 经常性资助
  • 批准号:
    EP/R00661X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Tomographic Imaging
断层成像
  • 批准号:
    EP/M022498/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Next Generation Multi-Dimensional X-Ray Imaging
下一代多维 X 射线成像
  • 批准号:
    EP/M010619/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant

相似国自然基金

针对群体协作会话过程的可视化方法研究
  • 批准号:
    61802283
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于跨区域视角的城市食物-能源-水关联系统的核算及评估工具包开发
  • 批准号:
    71804023
  • 批准年份:
    2018
  • 资助金额:
    19.5 万元
  • 项目类别:
    青年科学基金项目
新兴研究领域辨识及其形成过程的计量研究
  • 批准号:
    71603040
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
高可复用性可视化研究
  • 批准号:
    61672055
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于移动最小二乘曲面的水泥水化微结构演化三维反向建模
  • 批准号:
    61572230
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
  • 批准号:
    2332339
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Standard Grant
Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
  • 批准号:
    EP/X036766/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
  • 批准号:
    IE230100464
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Early Career Industry Fellowships
Generative AI toolkit to enforce regulatory requirements and enable capacity for increased corporate transparency.
生成式人工智能工具包,用于执行监管要求并提高企业透明度。
  • 批准号:
    10098889
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Collaborative R&D
Building an epidemiological modelling toolkit for epidemic preparedness
构建流行病学建模工具包以做好流行病防范
  • 批准号:
    MR/Z503939/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了