Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis

使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模

基本信息

  • 批准号:
    EP/W023202/1
  • 负责人:
  • 金额:
    $ 9.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The UK has pledged to achieve net zero emissions by 2050, aiming to develop green transition technologies such as geothermal energy, geological storage of CO2 from industrial and direct air capture sources, hydrogen fuel cells, batteries, and compressed-air energy, as well as advancing nuclear as a clean energy source through clean storage and disposal. The success of these technologies is highly dependent on understanding the behaviour of Earth materials at a range of scales, in the context of deformation, fluid flow, and temperature changes, which can affect how rocks break and how fluids and heat migrate in the subsurface through these rocks. Understanding how fractures and other smaller-scale heterogeneities affect rock properties also furthers the capabilities of numerical models dedicated to predicting fractures in ceramics, composites, bioengineered materials, human bones, and ion lithium batteries, as additional examples.Processes governing fracturing in complex media, and the interaction of fractures with smaller and larger scale discontinuities and material variations, is often investigated using numerical models. The main drawback of these models is that their performance usually depends on the amount of detail included, such as the geometric details of the ensuing fractures, and distributions of differently shaped embedded inclusions that tend to change the material's behaviour. However, having the ability to effectively and accurately model real full-scale heterogeneous multi-scale problems is necessary to the development of robust, low-carbon and cost-effective strategies that underpin the energy transition. This project proposes to develop a key mathematical strategy to enhance the performance of computational solid mechanics methods, while incorporating additional levels of detail in the description of the material. We propose to develop, implement, and validate an efficient three-dimensional multi-scale numerical method, that combines 3D volumetric isogeometry in bodies containing fractures, with numerical error estimators to more efficiently represent mm- and cm-scale heterogeneities when computing the deformation of a meter- to km-scale body containing multiple fractures. Error estimators enable regions critical to overall solution accuracy to be targeted with higher levels of computational power, dynamically adjusting detail and load during the simulation. As opposed to other methods, the specific method to be developed during this project supports both small and large variations in the material properties, without compromising the quality of the solution, and without inflating the computational cost of the method. Computational efficiency and accuracy enable the method to be applied effectively to large real-world problems, enabling the consideration of larger and more realistic problems without significantly increasing computational effort. Developing the ability to model such problems, and sharing the development through open-source code with the wider scientific community, is of national importance. Quantifying the relationship between scales in the context of solid body fracturing, in complex scenarios, directly supports responsible innovation in the UK, and supports the development of low-carbon and effective energy generation schemes, safe and clean deposition of waste materials, and elongating the life and increasing the efficacy of electrical storage devices.
英国承诺到2050年实现净零排放,旨在开发绿色转型技术,例如地热能、工业二氧化碳地质储存和直接空气捕获源、氢燃料电池、电池和压缩空气能源,以及通过清洁储存和处置,推动核能成为清洁能源。这些技术的成功在很大程度上取决于对地球材料在变形、流体流动和温度变化的背景下在一定范围内的行为的理解,这可能会影响岩石的破裂以及流体和热量如何在地下通过这些岩石。了解裂缝和其他较小尺度的非均质性如何影响岩石特性还可以进一步增强致力于预测陶瓷、复合材料、生物工程材料、人体骨骼和离子锂电池等裂缝的数值模型的能力。控制复杂介质中破裂的过程,以及裂缝与更小和更大尺度的不连续性和材料变化的相互作用,通常使用数值模型进行研究。这些模型的主要缺点是它们的性能通常取决于所包含的细节数量,例如随后断裂的几何细节,以及往往会改变材料行为的不同形状嵌入夹杂物的分布。然而,拥有有效、准确地模拟真实的全面异构多尺度问题的能力对于制定支持能源转型的稳健、低碳和具有成本效益的战略是必要的。该项目建议开发一种关键的数学策略来增强计算固体力学方法的性能,同时在材料的描述中纳入额外的细节级别。我们建议开发、实施和验证一种高效的三维多尺度数值方法,该方法将包含裂缝的物体中的 3D 体积等几何测量与数值误差估计器相结合,以便在计算变形时更有效地表示毫米和厘米尺度的异质性。一个米到公里大小的物体,含有多个裂缝。误差估计器使对整体解决方案精度至关重要的区域能够以更高水平的计算能力为目标,在仿真过程中动态调整细节和负载。与其他方法不同,该项目期间开发的特定方法支持材料属性的小变化和大变化,而不会影响解决方案的质量,也不会增加该方法的计算成本。计算效率和准确性使该方法能够有效地应用于大型现实问题,从而能够在不显着增加计算量的情况下考虑更大、更现实的问题。培养对此类问题进行建模的能力,并通过开源代码与更广泛的科学界分享开发成果,具有国家重要性。量化固体压裂背景下、复杂场景下的尺度关系,直接支持英国负责任的创新,支持制定低碳有效的能源发电方案,安全清洁地沉积废弃物,延长英国的生命周期。寿命并提高蓄电装置的功效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adriana Paluszny Rodriguez其他文献

Adriana Paluszny Rodriguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adriana Paluszny Rodriguez', 18)}}的其他基金

Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W00948X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Research Grant

相似国自然基金

基于修正Battelle双曲线模型的埋地输气管道止裂控制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
全工序法加工超减比双曲线齿轮的双面同步成形机理及其设计方法研究
  • 批准号:
    51805555
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磁光材料的近场辐射传热增强及调控研究
  • 批准号:
    51806070
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
双曲线型三体问题下小行星附近集群编队飞行的轨道演化与控制
  • 批准号:
    11772024
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
等离激元晶体型双曲超材料生物传感器新机理及关键工艺研究
  • 批准号:
    61775064
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
  • 批准号:
    2271985
  • 财政年份:
    2019
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Studentship
Statistical mechanics of generalized conservative systems: self-organization by non-integrable topological constraints and non-elliptic diffusion processes
广义保守系统的统计力学:不可积拓扑约束和非椭圆扩散过程的自组织
  • 批准号:
    18J01729
  • 财政年份:
    2018
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis on hyperbolic-elliptic systems arising in semiconductor engineering and plasma physics
半导体工程和等离子体物理中出现的双曲椭圆系统的数学分析
  • 批准号:
    23740111
  • 财政年份:
    2011
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Large time structure of coupled system of hyperbolic and elliptic equations
双曲与椭圆方程耦合系统的大时间结构
  • 批准号:
    22340027
  • 财政年份:
    2010
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Some elliptic and hyperbolic problems arising in mechanics
力学中出现的一些椭圆和双曲问题
  • 批准号:
    0908663
  • 财政年份:
    2009
  • 资助金额:
    $ 9.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了