Next Generation Solid-State Batteries
下一代固态电池
基本信息
- 批准号:EP/P003532/1
- 负责人:
- 金额:$ 221.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state Li-ion batteries (SSLBs) represent the ultimate in battery safety, eliminating the flammable organic electrolyte. The SSLB would find potential uses in industries where battery safety is paramount, such as the automotive industry (in cars, e-bikes and buses) and also in smaller applications where the elimination of the liquid electrolyte results in more ready compatibility with other devices, e.g., a battery on a chip or sensor. These batteries can compete with traditional lithium ion batteries in terms of volumetric energy density but they suffer from low power density. Very recently several viable inorganic solid Li-ion conducting electrolytes been identified with conductivities approaching those of liquids, which motivates this research proposal. Strategies for lowering interfacial resistances, particularly between the electrolyte and electrodes, and for building inherently scaleable devices that can be cycled multiple times, without mechanical failure, are now urgently required to produce practical devices.This multi-institutional project brings together experienced, world-leading researchers from the University of Cambridge, the University of Oxford, and Imperial College with distinct but complementary expertise to attack a number of challenging critical issues in this field. Two classes of these solid electrolytes, oxide garnets and sulphide glass ceramics, have been found to have very high room-temperature ionic conductivities. A number of characteristics have been identified that may provide either relative benefits or disadvantages: higher-modulus materials may cycle more stably in batteries; tougher materials may be more easily brought into industrial practice; polycrystalline character may limit apparent bulk-transport rates, lowering power efficiency; interfaces may be chemically unstable, affecting long-term state of health; etc. We propose to implement fundamental studies that shed light on the relative benefits and disadvantages of the oxide and sulphide ion-conductor paradigms, using the Li6.55Ga0.15*0.3La3Zr2O12 (* = vacancy) (LLZO) garnet and the P2S5-Li2S (PSLS) glass ceramic as model materials.The project centres around three experimental work packages that focus on 1) quantifying bulk properties and making them reproducible; specifically, issues of moisture and carbon-dioxide sensitivity of the electrolytes will be addressed to produce films with reduced resistances at the interfaces between particles. LLZO and PSLS films will be contrasted, and transport through them will be investigated via a number of in operando (in situ) metrologies, e.g., 6Li tracer and NMR studies in close concert with theoretical studies of ionic transport. 2) illustrating chemistry of the solid-electrolyte/Li two-dimensional interface and probing its morphological stability over time; we seek to identify the critical parameters needed to mitigate Li-metal dendrite formation and growth, and which allow smooth Li-plating on the electrolyte surface. 3) producing tailored, cohesive three-dimensional interfaces with complex morphologies that do not crack on extensive cycling. The development of materials with much larger electrode/electrolyte contact areas will increase Li+ exchange between phases within the electrode, increasing rate performance. A multiscale modelling effort cuts across the 3 work packages, aiming to produce fundamental physical insight, synthesize experimental outputs, and guide experimental design. The goals for the theory portion are unique in the sense that the models will aim for true 'multiscale' character, integrating atomistic and continuum perspectives. Overall, the project aims to provide new new strategies to improve the performance of SSLBs but will also result in new electrolyte designs that are suitable for to protect Li metal in other so-called "beyond Li-ion" batteries such as Li-air and Li-S and smaller batteries for internet communications technologies.
固态锂离子电池(SSLB)代表电池安全性的终极,消除了易燃的有机电解质。 SSLB将在电池安全性至关重要的行业中找到潜在用途,例如汽车行业(在汽车,电子自行车和公共汽车中)以及消除液体电解质的较小应用,从而可以与其他设备更及时兼容,例如,芯片或传感器上的电池是电池。这些电池可以就体积能密度与传统的锂离子电池竞争,但它们的功率密度低。最近,通过接近液体的电导率来识别出几种可行的无机实心锂离子电解质,这激发了该研究建议。现在迫切需要降低降低界面阻力的策略,特别是在电解质和电极之间,以及在没有机械故障的情况下固有的可扩展设备来生产实用设备的固有可扩展设备,而无需机构上的设备。这些多机构项目汇集了剑桥大学,具有众多竞争范围的专家,既有经验丰富的,世界领先的研究人员,都有经验丰富的,世界领先的研究人员。这些固体电解质的两类,氧化物石榴石和硫化玻璃陶瓷具有很高的室温离子电导率。已经确定了许多可能会提供相对利益或缺点的特征:较高的统一材料可能在电池中更稳定;更艰难的材料可能更容易带入工业实践。多晶特征可能会限制明显的批量运输率,从而降低功率效率;界面在化学上可能是不稳定的,影响了长期的健康状况; etc. We propose to implement fundamental studies that shed light on the relative benefits and disadvantages of the oxide and sulphide ion-conductor paradigms, using the Li6.55Ga0.15*0.3La3Zr2O12 (* = vacancy) (LLZO) garnet and the P2S5-Li2S (PSLS) glass ceramic as model materials.The project centres around three experimental work packages that focus在1)量化散装特性并使其可重现;具体而言,将解决电解质的水分和二氧化碳灵敏度问题,以产生颗粒之间接口的电阻降低的膜。 LLZO和PSLS薄膜将形成鲜明对比,将通过多个Operando(原位)计量学进行调查,例如6LI Tracer和NMR研究与离子运输的理论研究密切合作。 2)说明固体电解质/li二维界面的化学性质,并随着时间的推移探测其形态稳定性;我们试图确定减轻Li-Metal Dendrite形成和生长所需的关键参数,并允许在电解质表面上平滑LI板。 3)产生具有复杂形态的量身定制的,具有粘性的三维界面,这些界面不会在广泛的骑自行车上破裂。具有较大电极/电解质接触区域的材料的开发将增加电极内相之间的LI+交换,从而提高速率性能。多尺度建模工作削减了3个工作包,旨在产生基本的物理见解,合成实验输出和指导实验设计。理论部分的目标是独一无二的,从某种意义上说,模型将旨在实现真实的“多尺度”特征,整合原子和连续观点。总体而言,该项目旨在提供新的新策略来提高SSLB的性能,但还将导致新的电解质设计,适合在其他所谓的“超越锂离子”电池中保护Li Metal,例如Li-Air和Li-S和诸如Internet通信技术的较小电池。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion.
- DOI:10.1021/acs.chemmater.1c00375
- 发表时间:2021-06-08
- 期刊:
- 影响因子:0
- 作者:Dey S;Zeng D;Adamson P;Cabana J;Indris S;Lu J;Clarke SJ;Grey CP
- 通讯作者:Grey CP
Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics
- DOI:10.1021/acs.chemmater.8b00486
- 发表时间:2018-06-12
- 期刊:
- 影响因子:8.6
- 作者:Brugge, Rowena H.;Hekselman, A. K. Ola;Aguadero, Ainara
- 通讯作者:Aguadero, Ainara
Finite element methods for multicomponent convection-diffusion
多分量对流扩散的有限元方法
- DOI:10.48550/arxiv.2208.11949
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aznaran F
- 通讯作者:Aznaran F
Solid-state NMR investigation of structure and dynamics of solid electrolytes and coatings for Li-ion battery applications
用于锂离子电池应用的固体电解质和涂层的结构和动力学的固态核磁共振研究
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Emge Steffen
- 通讯作者:Emge Steffen
The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance
- DOI:10.1039/d0ta04974c
- 发表时间:2020-07-28
- 期刊:
- 影响因子:11.9
- 作者:Brugge, Rowena H.;Pesci, Federico M.;Aguadero, Ainara
- 通讯作者:Aguadero, Ainara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Grey其他文献
Can a high-fidelity simulation tutorial improve written examination results? Review of a change in teaching practice.
高保真模拟教程能否提高笔试成绩?
- DOI:
10.12968/bjon.2022.31.13.704 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Clare Grey - 通讯作者:
Clare Grey
Clare Grey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Grey', 18)}}的其他基金
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
- 批准号:
EP/Y024958/1 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Fellowship
The UK Dynamic Nuclear Polarisation Magic Angle Spinning NMR Facility
英国动态核极化魔角旋转核磁共振设备
- 批准号:
EP/W021498/1 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)
集成能源系统先进材料中心 (CAM-IES)
- 批准号:
EP/P007767/1 - 财政年份:2016
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
AMorphous Silicon Alloy Anodes for Multiple Battery Systems - "AMorpheuS"
用于多种电池系统的非晶硅合金阳极 - “AMorpheuS”
- 批准号:
EP/N001583/1 - 财政年份:2015
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Solid State NMR Studies of Disordered Solids-Ionic Conductors and Battery Materials
无序固体离子导体和电池材料的固态核磁共振研究
- 批准号:
0804737 - 财政年份:2008
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714183 - 财政年份:2007
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0506120 - 财政年份:2005
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
ACT/SGER: Improving the Lifetimes of Batteries: NMR Studies of Structure and SEI Formation
ACT/SGER:提高电池寿命:结构和 SEI 形成的 NMR 研究
- 批准号:
0442181 - 财政年份:2004
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Purchase and Upgrade of Solid State NMR Instrumentation for Materials Chemistry and Geosciences
用于材料化学和地球科学的固态核磁共振仪器的购买和升级
- 批准号:
0321001 - 财政年份:2003
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0211353 - 财政年份:2002
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
相似国自然基金
新一代精准、安全、适用范围更广的腺嘌呤碱基编辑器的开发及其在基因治疗中的应用研究
- 批准号:32371535
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
面向新一代分布式物联网的随机接入系统理论与关键技术研究
- 批准号:62371363
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
- 批准号:
10063108 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
EU-Funded
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
- 批准号:
10583283 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别: