AMorphous Silicon Alloy Anodes for Multiple Battery Systems - "AMorpheuS"

用于多种电池系统的非晶硅合金阳极 - “AMorpheuS”

基本信息

  • 批准号:
    EP/N001583/1
  • 负责人:
  • 金额:
    $ 120.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Carbon anodes for Li-ion batteries (LIBs) are regarded as one limiting factor preventing Li-ion batteries from being a viable option for transport applications (which require higher capacity for extended driving ranges) or grid storage applications (which require long cycle life). Compared to carbon, silicon has a much higher energy density and has been the focus of considerable research effort in recent years, stimulating the formation of high-profile, high-investment university spin-out companies such as Amprius and Nexeon. Silicon is the second most abundant element in the earth's crust and is thus a sustainable battery material candidate from a cost and availability perspective. However, despite its desirable properties for Li-ion batteries, it is also renowned for its drawbacks, namely large volume expansion, pulverisation and continued lithium loss through chemical reactions with the electrolyte (which the lithium ions diffuse in). Such phenomena have hindered the successful widespread uptake of this material in commercial Li-ion batteries, despite the myriad of global research groups working on finding ways to make it viable, e.g. by nano-structuring. Project AMorpheuS presents an alternative way to fabricate Si anodes that does not rely on complex, costly nanostructuring or attempting to control electrode architectures. The approach is simply to deposit from solution using electrodeposition methods and to passivate the amorphous thin films with polymer chemistries that have already been shown to be effective as binders for Si electrodes. A fundamental understanding of the structural and surface properties of these electrodes will be obtained during realistic battery operation so as to identify the optimum Si alloy and polymer chemistry and optimise performance rationally. This project will develop Si electrodes that are not exclusively destined for use in Li-ion systems but can also be reversibly cycled in Na-ion and Li-S batteries. A variety of Si-alloy chemistries will be explored, including Si-Sn alloys, since these show considerable promise as anodes for Na-ion batteries. A goal is to develop the first Si-based Na anode. This flexibility opens up numerous technology transfer opportunities in a variety of emerging battery systems focused on higher energy, sustainable, and safer technologies (e.g. Li-ion, Na-ion and LiS, respectively). The new batteries will be tested in the UK's first full battery prototyping line in a non-commercial environment. Fully understanding what occurs in a battery as it is charged / discharged is complex. The battery is a closed system with constantly changing domains. Central to the success of this project is the application of in-situ characterisation techniques for analysing real-time, dynamic structural and surface changes that occur as Li ions pass back and forth between the anode and cathode (or why they do not). This knowledge will subsequently guide continued improvements in electrode designs. The major techniques proposed to gain a comprehensive understanding of the chemistry occurring in the battery as it is charged/discharged are multinuclear NMR and X-ray computed tomography. These techniques have provided battery researchers with a wealth of vital, real-time insight - especially regarding failure mechanisms in silicon materials. Project AMorpheuS's approach will reduce the need for additional processing of materials in the electrodes, e.g., (i) high surface area carbons (which need energy-intense mixing processes) and (ii) industry-standard binders (which require toxic solvents to enable them to be processed into coatings). This strategy will reduce production time and eliminate toxic chemicals. These improvements will significantly reduce manufacturing cost and increase the UK's energy security.
锂离子电池(LIBS)的碳阳极被认为是一种限制因素,防止锂离子电池是运输应用程序的可行选择(需要更高的扩展驾驶范围)或网格存储应用程序(需要长的循环寿命)。与碳相比,硅具有更高的能量密度,并且近年来一直是大量研究工作的重点,刺激了Amprius和Nexeon等备受瞩目的高投资大学纺织公司的形成。硅是地壳中第二大元素,因此从成本和可用性角度来看是可持续的电池材料。然而,尽管其对锂离子电池的理想特性,但它也因其缺点而闻名,即大量膨胀,粉碎和通过与电解质的化学反应(锂离子弥漫在内)的持续锂损失。尽管有无数的全球研究小组致力于寻找使其可行的方法,例如通过纳米结构。 Project Amorpheus提供了一种制造不依赖复杂,昂贵的纳米结构或试图控制电极体系结构的SI阳极的替代方法。该方法仅仅是使用电沉积方法从溶液中沉积,并用已经被证明是Si电极的粘合剂有效的聚合物化学物质的无定形薄膜。对这些电极的结构和表面特性的基本了解将在逼真的电池运行过程中获得,以识别最佳的Si合金和聚合物化学,并合理地优化性能。该项目将开发不完全用于锂离子系统的Si电极,但也可以在Na-ion和Li-S电池中可逆地循环。将探索包括SI-SN合金在内的各种Si-Aloy化学成分,因为这些化学表现出巨大的希望作为Na-ion电池的阳极。一个目标是开发第一个基于SI的NA阳极。 这种灵活性为各种新兴的电池系统开辟了许多技术转移机会,这些电池系统侧重于更高的能源,可持续性和更安全的技术(例如,Li-ion,Na-ion和Lis)。新电池将在英国在非商业环境中的第一个完整的电池原型制作线上进行测试。充分了解电池充电 /放电时发生的事情是复杂的。电池是一个封闭的系统,具有不断变化的域。该项目成功的核心是现场表征技术的应用,用于分析当阳极和阴极之间来回传递时发生的实时,动态结构和表面变化(或为什么它们不这样做)。这些知识随后将指导电极设计的持续改进。提议的主要技术是对电池充电/放电时的化学反应的全面了解是多核NMR和X射线计算机断层扫描。这些技术为电池研究人员提供了丰富的实时见解,尤其是关于硅材料中的故障机制。副代态的方法将减少电极中材料进行额外处理的需求,例如(i)高表面积碳(需要能量强的混合过程)和(ii)(ii)行业标准的粘合剂(它们需要有毒的溶剂以使它们能够将其加工成涂料)。该策略将减少生产时间并消除有毒化学物质。这些改进将大大降低制造成本并提高英国的能源安全。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
  • DOI:
    10.1016/j.jpowsour.2015.03.133
  • 发表时间:
    2015-07-15
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Ferrari, Stefania;Loveridge, Melanie;Bhagat, Rohit
  • 通讯作者:
    Bhagat, Rohit
Journal of Power Sources
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Collins;G. Kear;Xiaohong Li;C. Low;Derek Pletcher;R. Tangirala;Duncan Stratton-Campbell
  • 通讯作者:
    John Collins;G. Kear;Xiaohong Li;C. Low;Derek Pletcher;R. Tangirala;Duncan Stratton-Campbell
Engineering new defective phases of UiO family metal-organic frameworks with water
  • DOI:
    10.1039/c8ta10682g
  • 发表时间:
    2019-04-07
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Firth, Francesca C. N.;Cliffe, Matthew J.;Grey, Clare P.
  • 通讯作者:
    Grey, Clare P.
Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework
通过铪金属有机框架的缺陷介导转化形成金属有机纳米片
  • DOI:
    10.17863/cam.11241
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cliffe M
  • 通讯作者:
    Cliffe M
Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.
  • DOI:
    10.1021/jacs.7b00106
  • 发表时间:
    2017-04-19
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Cliffe MJ;Castillo-Martínez E;Wu Y;Lee J;Forse AC;Firth FCN;Moghadam PZ;Fairen-Jimenez D;Gaultois MW;Hill JA;Magdysyuk OV;Slater B;Goodwin AL;Grey CP
  • 通讯作者:
    Grey CP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clare Grey其他文献

Can a high-fidelity simulation tutorial improve written examination results? Review of a change in teaching practice.
高保真模拟教程能否提高笔试成绩?
  • DOI:
    10.12968/bjon.2022.31.13.704
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clare Grey
  • 通讯作者:
    Clare Grey

Clare Grey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clare Grey', 18)}}的其他基金

Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
  • 批准号:
    EP/Y024958/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Fellowship
The UK Dynamic Nuclear Polarisation Magic Angle Spinning NMR Facility
英国动态核极化魔角旋转核磁共振设备
  • 批准号:
    EP/W021498/1
  • 财政年份:
    2022
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Research Grant
Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)
集成能源系统先进材料中心 (CAM-IES)
  • 批准号:
    EP/P007767/1
  • 财政年份:
    2016
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Research Grant
Next Generation Solid-State Batteries
下一代固态电池
  • 批准号:
    EP/P003532/1
  • 财政年份:
    2016
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Research Grant
Solid State NMR Studies of Disordered Solids-Ionic Conductors and Battery Materials
无序固体离子导体和电池材料的固态核磁共振研究
  • 批准号:
    0804737
  • 财政年份:
    2008
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Continuing Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
  • 批准号:
    0714183
  • 财政年份:
    2007
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Continuing Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
  • 批准号:
    0506120
  • 财政年份:
    2005
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Continuing Grant
ACT/SGER: Improving the Lifetimes of Batteries: NMR Studies of Structure and SEI Formation
ACT/SGER:提高电池寿命:结构和 SEI 形成的 NMR 研究
  • 批准号:
    0442181
  • 财政年份:
    2004
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Standard Grant
Purchase and Upgrade of Solid State NMR Instrumentation for Materials Chemistry and Geosciences
用于材料化学和地球科学的固态核磁共振仪器的购买和升级
  • 批准号:
    0321001
  • 财政年份:
    2003
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Standard Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
  • 批准号:
    0211353
  • 财政年份:
    2002
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

超低微合金化高强韧铝硅铜合金的强韧化机制研究
  • 批准号:
    52365049
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
利用高熵合金定向凝固去除硅废料中硼杂质的协同机制研究
  • 批准号:
    22378272
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
铝硅合金析出相自主构筑铠装表面鲁棒性与超疏水机械耐久性关联机制
  • 批准号:
    52375183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀土铕对过共晶Al-Si合金中硅相的双重变质作用及机理
  • 批准号:
    52301046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型混溶高硅铝基间隙相变储能合金设计及其电磁连续自封装
  • 批准号:
    52371132
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Development of highly reactive complexes of 3d transition metals by use of silicon-based multidentate ligands and exploration of catalytic functions of these complexes
利用硅基多齿配体开发高活性3d过渡金属配合物并探索这些配合物的催化功能
  • 批准号:
    22K05123
  • 财政年份:
    2022
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation of jointed silicon wires/nanowires using dissolution and re-crystalization of silicon in molten zinc droplets.
利用硅在熔融锌滴中的溶解和重结晶形成连接的硅线/纳米线。
  • 批准号:
    20H02500
  • 财政年份:
    2020
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of novel chemical hydrogen storage by using the silicon containing compounds
利用含硅化合物开发新型化学储氢
  • 批准号:
    20K21233
  • 财政年份:
    2020
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Catalysts Bearing Metal Centers Activated by Silicon-Based Supporting Ligands and Their Use for Transformation of C-H Bonds
硅基支持配体活化的带有金属中心的催化剂的开发及其在 C-H 键转化中的应用
  • 批准号:
    19K05490
  • 财政年份:
    2019
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solid-State Synthesis of Mg2Si Fine Powder from Waste Silicon
废硅固相合成Mg2Si细粉
  • 批准号:
    17K06845
  • 财政年份:
    2017
  • 资助金额:
    $ 120.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了