Silicon Photonics for Future Systems

未来系统的硅光子学

基本信息

  • 批准号:
    EP/L00044X/1
  • 负责人:
  • 金额:
    $ 765.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Silicon Photonics is poised to transform photonics in applications ranging from intra and inter-chip interconnect to lab on a chip; from consumer products to Fibre to the Home transceivers; from high performance computing interconnect to environmental sensing. In other words silicon will bring photonics to mass markets. Despite significant progress recently, in order to successfully transform photonics in this way, several key research challenges still need to be overcome. In this programme we will tackle all of these research challenges, and in so doing we will do nothing less than facilitate a revolution in low cost photonics, placing the UK at its centre. To succeed in mass markets silicon photonics requires (i) a low cost method of comprehensively testing at the wafer scale; (ii) a passive alignment coupling technique from fibre to optical chip; (iii) a means of scaling the functionality of the photonic circuit; (iv) very low power, high data rate modulators; and (v) low cost integrated lasers on chip. To date there are no satisfactory solutions for any of these issues, but this programme will find solutions for them all.We have a technical advantage in all aspects of the work due either to previous projects in which we have produced the best silicon modulators in the world today, as well as the first erasable silicon Bragg gratings; or due to preparatory work that we have carried out in advance of this project in which we have carried out modelling and even some preparatory experimentation on dual layer photonics, passive alignment of fibres to silicon photonics circuits. In the case of low cost integrated lasers, we have previous experience within a European project, and we are also working with an international collaborator from KAIST, Korea, with whom we jointly have a technical lead in the area.To maximise the impact of our work, we will produce proof-of-concept demonstrators towards the end of the programme, that showcase the research achievements to all stakeholders within the UK, an approach that has attracted key industrial partners to the programme as they recognise both the transformative work that will be done, and the opportunity to contribute to the work and influence its direction and impact. The importance of our proposed programme has already been recognised internationally as we have been asked in a letter of support from Professor Kimerling at MIT, to report annually to the USA industry forum, co-ordinated by MIT, giving tremendous exposure for UK supported work. In letters of support the proposed work has been endorsed as essential by leaders in the field from around the world at MIT, Intel, Tokyo University, and Paris-Sud University, as well as photonics leaders from within the UK engaged in other programme grants (Seeds (UCL), Penty (Cambridge), Zayats (Kings), Dawson (Strathclyde), Payne and Zheludev (both Southampton), and UK industry (Oclaro, Sharp, Wentworth). Within the programme, we have 4 UK industrial partners (Oclaro, Wentworth Laboratories, Sharp Laboraties of Europe, and Intel), 4 international academic partners (KAIST, MIT, University of Tokyo, and Paris Sud), as well as numerous offers of support and collaboration from academic institutions within the UK. Our collaborators have pledged ~£500,000 of in-kind support to the programme.
硅光子学被中毒以转化从芯片内和芯片间互连到实验室的应用中的光子学。从消费产品到纤维再到家庭收发器;从高性能计算互连到环境灵敏度。换句话说,硅会将光子学带入大众市场。尽管最近取得了重大进展,但为了成功地以这种方式改变光子学,仍然需要克服一些关键的研究挑战。在该计划中,我们将应对所有这些研究挑战,因此,我们将做的不仅仅是支持低成本光子学的革命,使英国成为其中心。要在大众市场上取得成功,硅光子学需要(i)在摇摆量表上进行全面测试的低成本方法; (ii)从纤维到光学芯片的被动比对耦合技术; (iii)缩放光子电路功能的一种手段; (iv)功率非常低,数据速率调节器; (v)芯片上低成本的集成激光器。迄今为止,对于任何这些问题,都没有满意的工厂解决方案,但是该计划将为所有这些问题找到解决方案。我们在工作的各个方面都有技术优势,这要么是由于我们以前已经生产了当今世界上最好的硅调制器,也是第一个可擦除的硅bragg渐变;或者由于我们在该项目之前进行的准备工作,在该项目之前,我们已经对双层光子学进行了建模,甚至进行了一些制备实验,将纤维的被动比对与硅光子电路。对于低成本集成激光器的情况,我们在欧洲项目中有以前的经验,并且我们还与来自韩国Kaist的国际合作者合作,我们在该地区共同拥有技术领先地位。为了最大程度地提高工作的影响,我们将在计划结束的计划中产生概念证明者,以展示他们在研究中的所有企业,从而吸引了所有企业,以吸引所有企业,从而吸引了所有企业,从而吸引了企业,从而使他们的行业占有一席之地,从而使他们的行业占有一席之地,从而使他们的行业占有一席之地。将要做的变革性工作,以及为工作和影响其方向和影响而做出贡献的机会。我们提出的计划的重要性已经在国际上得到认可,正如我们在麻省理工学院教授的一份支持书中所要求的那样,每年都会向美国麻省理工学院协调的美国行业论坛报告,为英国支持的工作提供了巨大的曝光率。在支持信中,该领域的领导人在支持信中得到了必不可少的认可。 (Oclaro,Sharp,Wentworth)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Germanium-on-silicon platforms for nonlinear photonics in the mid-infrared
用于中红外非线性光子学的硅基锗平台
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. C. Peacock
  • 通讯作者:
    A. C. Peacock
High-speed detection at two micrometres with monolithic silicon photodiodes
  • DOI:
    10.1038/nphoton.2015.81
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Ackert, Jason J.;Thomson, David J.;Knights, Andrew P.
  • 通讯作者:
    Knights, Andrew P.
Spectroscopy of ytterbium-doped tantalum pentoxide rib waveguides on silicon
硅上掺镱五氧化二钽肋形波导的光谱
  • DOI:
    10.1364/ome.4.001505
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Aghajani A
  • 通讯作者:
    Aghajani A
Illustration of the industrial readiness of hot wire chemical vapor deposition (HWCVD) as part of standard micro-fabrication and high spec nanofabrication production lines
作为标准微加工和高规格纳米加工生产线一部分的热丝化学气相沉积 (HWCVD) 的工业准备情况图示
Silicon optical modulators and their Integration with CMOS electronics
硅光调制器及其与 CMOS 电子器件的集成
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Shakoor
  • 通讯作者:
    A. Shakoor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Reed其他文献

Graham Reed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Reed', 18)}}的其他基金

CORNERSTONE Photonics Innovation Centre (C-PIC)
基石光子学创新中心 (C-PIC)
  • 批准号:
    EP/Z531066/1
  • 财政年份:
    2024
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
CORNERSTONE 2.5
基石2.5
  • 批准号:
    EP/W035995/1
  • 财政年份:
    2022
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
Towards a revolution in optical communications
迈向光通信革命
  • 批准号:
    EP/V012789/1
  • 财政年份:
    2021
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
MISSION (Mid- Infrared Silicon Photonic Sensors for Healthcare and Environmental Monitoring)
MISSION(用于医疗保健和环境监测的中红外硅光子传感器)
  • 批准号:
    EP/V047663/1
  • 财政年份:
    2021
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
CORNERSTONE 2
基石2
  • 批准号:
    EP/T019697/1
  • 财政年份:
    2020
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
Rockley Photonics and the University of Southampton: A Prosperity Partnership
罗克利光子学和南安普顿大学:繁荣的伙伴关系
  • 批准号:
    EP/R003076/1
  • 财政年份:
    2017
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
Electronic-Photonic Convergence: A Platform Grant
电子光子融合:平台资助
  • 批准号:
    EP/N013247/1
  • 财政年份:
    2016
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
CORNERSTONE: Capability for OptoelectRoNics, mEtamateRialS, nanoTechnOlogy aNd sEnsing
基石:光电、超材料、纳米技术和传感能力
  • 批准号:
    EP/L021129/1
  • 财政年份:
    2014
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
UK Silicon Photonics
英国硅光子学
  • 批准号:
    EP/F001428/2
  • 财政年份:
    2012
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant
Near infrared single photon detection using Ge-on-Si heterostructures
使用 Ge-on-Si 异质结构进行近红外单光子检测
  • 批准号:
    EP/H051767/2
  • 财政年份:
    2012
  • 资助金额:
    $ 765.71万
  • 项目类别:
    Research Grant

相似国自然基金

磁场调控分子材料阵列组装用于可重构光子学器件
  • 批准号:
    52303262
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
叠层二维狄拉克电子体系中的等离激元光子学
  • 批准号:
    12274301
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于新型光子晶体细胞力学显微镜的乳腺癌转移力学生物学研究
  • 批准号:
    12202212
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于光子学的毫米波通信感知深度融合机理
  • 批准号:
    62201393
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accurate, High-Throughput, and Affordable Nucleic Acid Sequencing Technology
准确、高通量、经济实惠的核酸测序技术
  • 批准号:
    10258663
  • 财政年份:
    2021
  • 资助金额:
    $ 765.71万
  • 项目类别:
High-throughput Label-free Biosensor Platform for Rapid Detection of Antigen-specific T Cells with Single Cell Resolution
高通量无标记生物传感器平台,用于以单细胞分辨率快速检测抗原特异性 T 细胞
  • 批准号:
    10156407
  • 财政年份:
    2021
  • 资助金额:
    $ 765.71万
  • 项目类别:
Silicon Photonic Blood Typing
硅光子血型分析
  • 批准号:
    9763988
  • 财政年份:
    2018
  • 资助金额:
    $ 765.71万
  • 项目类别:
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
  • 批准号:
    9098709
  • 财政年份:
    2015
  • 资助金额:
    $ 765.71万
  • 项目类别:
Bioaffinity Assays Using UV One-Dimensional Photonic Crystals (1DPC)
使用紫外一维光子晶体 (1DPC) 进行生物亲和力测定
  • 批准号:
    8957305
  • 财政年份:
    2015
  • 资助金额:
    $ 765.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了