Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
基本信息
- 批准号:EP/J004871/1
- 负责人:
- 金额:$ 132.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While three quarters of the earth's surface is covered in water almost all of it is present in the oceans with less than 0.5 % available as freshwater. Increasing global population, industrialisation and particularly agriculture exert significant pressures on this limited resource. With the aim to unlock the vast water resource in the oceans, attention for some time has focussed on the potential desalination of seawater to provide freshwater. However, current desalination technology, based on physicochemical processes, is a highly energy demanding process and its application is limited to fuel-rich and/or affluent developed countries. In this project we turn to biological mechanisms to remove sodium chloride (NaCl) from seawater ('bio-desalination'). We will exploit the fact that marine organisms employ energy-consuming transport processes to maintain low sodium concentrations inside their cells. The energy for this natural desalination ultimately comes from sunlight harvested by photo-autotrophic organisms at the bottom of the marine food chain. Based on available information on ion flux rates through individual transport proteins and their abundance in cell membranes, and taking into account the total cell surface area and volume generated by high-density bacterial cultures, we propose that the energized low-sodium internal volume of microbial cultures can be used as an ion exchanger to remove NaCl from the surrounding seawater.In a multi-pronged, integrated work programme led by a team of experts from different disciplines (microbiology, biophysics, molecular biology, environmental engineering and process engineering) we will generate the biological tools that will enable us to control membrane transport in marine bacteria, and we will design a simple and energy-efficient process for growth, exposure and removal of the bacterial cultures in/from the seawater. We will further maximise both the training potential and the potential impact of this innovative and multidisciplinary programme through staff exchange programmes, Social Impact Assessment and involvement of an Advisory Board which includes representatives of water industries and charities working in developing countries.The work comprises five work packages: 1.We will select a suitable isolate of marine cyanobacteria and identify environmental conditions (e.g. pH, carbon supply) that can act as on/off triggers for endogenous Na-export. 2. We will adjust the activity and biophysical properties of light-energized, retinal Cl-pumps and Na-channel proteins to generate a functional 'salt-accumulator for subsequent expression in the cyanobacteria under the control of an inducible promoter. 3. We will analyse the effect of environmental conditions (including salinity) on chemical and physical cell-wall properties and develop a controllable cell-aggregation protocol to facilitate rapid removal of the cyanobacteria from the desalted water. 4. We will assemble a prototype process engineering solution that combines the different biological phases of bio-desalination, and we will build a bench-scale model. 5. We will carry out a thorough assessment of social impact, demands, risks and policy implications of this new technology. The project addresses several fundamental challenges in different areas of modern biology and engineering. The groundbreaking advances made over recent years in synthetic biology and bioreactor technology have created an exciting research environment for tackling these challenges now with a realistic chance of success. Furthermore, bio-desalination technology lends itself to be combined with downstream industrial uses of the harvested microorganism e.g. the production of bio-fuel and extraction of bio-compounds for cosmetics and medicine. The potential benefit for society is evident as the proposed technology harvests the enormous energy that is encapsulated in autotrophic marine life, biological membranes and ion gradients.
虽然地球表面的四分之三被水覆盖,但几乎所有的水都存在于海洋中,只有不到 0.5% 的淡水可供利用。全球人口的增长、工业化,特别是农业对这一有限的资源造成了巨大的压力。为了释放海洋中丰富的水资源,一段时间以来,人们的注意力集中在海水淡化以提供淡水的潜力上。然而,目前基于物理化学过程的海水淡化技术是一种高能源需求过程,其应用仅限于燃料丰富和/或富裕的发达国家。在这个项目中,我们利用生物机制从海水中去除氯化钠(NaCl)(“生物淡化”)。我们将利用海洋生物利用耗能运输过程来维持细胞内低钠浓度的事实。这种自然海水淡化的能量最终来自海洋食物链底部的光自养生物收集的阳光。基于通过单个转运蛋白的离子通量速率及其在细胞膜中的丰度的现有信息,并考虑到高密度细菌培养物产生的总细胞表面积和体积,我们建议微生物的通电低钠内部体积培养物可用作离子交换剂,以去除周围海水中的氯化钠。在由来自不同学科(微生物学、生物物理学、分子生物学、环境工程和过程工程)的专家团队领导的多管齐下的综合工作计划中,我们将开发生物工具,使我们能够控制海洋细菌的膜运输,并且我们将设计一种简单且节能的工艺,用于在海水中/从海水中生长、暴露和去除细菌培养物。我们将通过员工交流计划、社会影响评估以及顾问委员会的参与,进一步最大限度地发挥这一创新性多学科计划的培训潜力和潜在影响。顾问委员会包括在发展中国家工作的水工业和慈善机构的代表。这项工作包括五项工作套餐: 1.我们将选择合适的海洋蓝藻分离株,并确定可作为内源性钠输出开/关触发器的环境条件(例如 pH、碳供应)。 2. 我们将调整光驱动的视网膜Cl-泵和Na-通道蛋白的活性和生物物理特性,以产生功能性“盐积累器”,以便随后在诱导型启动子的控制下在蓝细菌中表达。 3. 我们将分析环境条件(包括盐度)对细胞壁化学和物理特性的影响,并开发可控的细胞聚集方案,以促进从脱盐水中快速去除蓝藻。 4. 我们将组装一个结合生物海水淡化的不同生物阶段的原型工艺工程解决方案,并且我们将建立一个实验室规模的模型。 5.我们将对这项新技术的社会影响、需求、风险和政策影响进行全面评估。该项目解决了现代生物学和工程学不同领域的几个基本挑战。近年来,合成生物学和生物反应器技术取得的突破性进展为应对这些挑战创造了令人兴奋的研究环境,现在有现实的成功机会。此外,生物淡化技术适合与收获的微生物的下游工业用途相结合,例如用于化妆品和药品的生物燃料的生产和生物化合物的提取。所提出的技术收获了自养海洋生物、生物膜和离子梯度中蕴含的巨大能量,对社会的潜在好处是显而易见的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodesalination: an emerging technology for targeted removal of Na + and Cl - from seawater by cyanobacteria
生物脱盐:一种利用蓝细菌从海水中定向去除 Na 和 Cl 的新兴技术
- DOI:http://dx.10.1080/19443994.2014.940647
- 发表时间:2014
- 期刊:
- 影响因子:1.1
- 作者:Minas K
- 通讯作者:Minas K
Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria.
PndbA600(蓝藻两阶段工业生物技术的自诱导启动子)的环境调节。
- DOI:http://dx.10.3389/fbioe.2020.619055
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Madsen MA
- 通讯作者:Madsen MA
Biodesalination: a case study for applications of photosynthetic bacteria in water treatment.
生物淡化:光合细菌在水处理中应用的案例研究。
- DOI:http://dx.10.1104/pp.113.233973
- 发表时间:2014
- 期刊:
- 影响因子:7.4
- 作者:Amezaga JM
- 通讯作者:Amezaga JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Amtmann其他文献
Procédés et moyens pour augmenter la tolérance aux contraintes et la biomasse dans des plantes
增强耐受性、限制性和植物生物质的过程和方法
- DOI:
- 发表时间:
2014-01-27 - 期刊:
- 影响因子:0
- 作者:
Anna Amtmann;M. Hannah;Veronique Gossele;Manuel Lopez;Giorgio Perrella;Christoph Verduyn - 通讯作者:
Christoph Verduyn
Anna Amtmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Amtmann', 18)}}的其他基金
ABA transport at the nexus of nutrient deficiency and water stress in plants
ABA 转运与植物营养缺乏和水分胁迫的关系
- 批准号:
BB/X002721/1 - 财政年份:2023
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
IRGA-Live Clamp: An integrated infrared gas-analysis platform to investigate systemic signalling within the plant canopy
IRGA-Live Clamp:用于研究植物冠层内系统信号传导的集成红外气体分析平台
- 批准号:
BB/W020289/1 - 财政年份:2022
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
Exploring chemical 'de-priming' and quantitative genetics to improve growth and yield of soybean under abiotic stress.
探索化学“去启动”和定量遗传学,以改善非生物胁迫下大豆的生长和产量。
- 批准号:
BB/R019894/1 - 财政年份:2018
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
Perception and integration of nutritional signals in plant root systems: Solving the mystery of K-Fe-P interactions.
植物根系中营养信号的感知和整合:解决 K-Fe-P 相互作用之谜。
- 批准号:
BB/N018508/1 - 财政年份:2016
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
The novel gene 'Histone Deacetylase Complex 1' enhances plant growth and abiotic stress tolerance; where, when and with whom?
新基因“组蛋白脱乙酰酶复合物 1”增强植物生长和非生物胁迫耐受性;
- 批准号:
BB/K008218/1 - 财政年份:2013
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
Inorganic ions and plant metabolism: targets signals and responses
无机离子和植物代谢:目标信号和响应
- 批准号:
BB/D006775/1 - 财政年份:2006
- 资助金额:
$ 132.6万 - 项目类别:
Research Grant
相似国自然基金
具有高效热质蒸发界面的蒸发器及其超快太阳能海水淡化研究
- 批准号:22302138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“无功”驱动仿生红树反渗透海水淡化系统优化
- 批准号:52376004
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
等离激元增强的高蒸发、高产水速率和抗积盐的太阳能海水淡化蒸发器的研究
- 批准号:22372112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
光热/光催化多功能织物用于太阳能驱动、不析盐和抗污型高效海水淡化的研究
- 批准号:42376045
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
太阳能驱动光热蒸发海水淡化耦合制氢体系及其能质传递协同机理
- 批准号:52376209
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
I-Corps: An Electrochemical Desalination Cell
I-Corps:电化学脱盐电池
- 批准号:
1237241 - 财政年份:2012
- 资助金额:
$ 132.6万 - 项目类别:
Standard Grant
Renewable energy, hydrogen and fuel cell systems with application to desalination.
可再生能源、氢和燃料电池系统及其在海水淡化中的应用。
- 批准号:
303966-2004 - 财政年份:2005
- 资助金额:
$ 132.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Renewable energy, hydrogen and fuel cell systems with application to desalination.
可再生能源、氢和燃料电池系统及其在海水淡化中的应用。
- 批准号:
303966-2004 - 财政年份:2005
- 资助金额:
$ 132.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Renewable energy, hydrogen and fuel cell systems with application to desalination.
可再生能源、氢和燃料电池系统及其在海水淡化中的应用。
- 批准号:
303966-2004 - 财政年份:2004
- 资助金额:
$ 132.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Renewable energy, hydrogen and fuel cell systems with application to desalination.
可再生能源、氢和燃料电池系统及其在海水淡化中的应用。
- 批准号:
303966-2004 - 财政年份:2004
- 资助金额:
$ 132.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral