Inorganic ions and plant metabolism: targets signals and responses

无机离子和植物代谢:目标信号和响应

基本信息

  • 批准号:
    BB/D006775/1
  • 负责人:
  • 金额:
    $ 33.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

A balanced supply of the macronutrients nitrogen, phosphorus and potassium (NPK) to crops is essential for food production but often not achieved in the field. Especially in developing countries K fertilisation has been neglected in favour of N fertilisation, which has led to serious depletion of soils in K. World food production is also threatened by increasing secondary salinisation of agricultural land due to sodium (Na) input through irrigation. Na stress often causes K deficiency as both ions compete for the same transport pathways into and within the plant. K carries out vital functions in growth and metabolism. Sufficient K supply in the field protects crops against herbivore attack, fungal diseases and abiotic stresses (e.g. drought and salinity), and there is evidence that K improves the efficiency of nitrogen usage. Problems related to K deficiency are difficult to spot in the field as visible deficiency symptoms don't appear until very late, at which stage it is often impossible to correct the situation. This is due to the fact that plants efficiently re-distribute K between different tissue and cellular compartments. K homeostasis relies on the ability of the plant to recognise the soil and tissue ion status and to exchange biological signals between cells and tissues. If we can unravel this hidden communication system and identify biological markers of K stress we can develop an early warning system. Thus, knowledge of primary stress targets and signals of K deficiency will be an invaluable help for predicting and treating K related problems in the field. In our laboratory we have recently identified a large set of genes that change their expression in response to the external K supply. Many of the K-regulated genes encode metabolic enzymes, for example those that catalyse reactions in sugar and amino acid metabolism, or sulphur and nitrate assimilation. We also found that the plant hormone jasmonic acid, which is best known for its function in plant defence against insects and fungi, plays a central role in controlling K induced changes in gene expression. These findings relate for the first time plant inorganic ion stress to plant metabolism and pathogen defence at the level of individual genes and signalling compounds. To further characterise K-induced changes in metabolic events we measured levels of amino acids in K starved plants. We observed an increase in glutamine, which explains the previously observed down-regulation of nitrate transporters, which in turn might be the reason for decreased N usage of K deficient crops. An observed decrease in glutamate during K starvation might indicate that the synthesis of this amino acid is impaired and thus the enzyme that catalyses this reaction (GOGAT) might be an early target of K stress. We therefore believe that combined information on K (and Na) stress induced gene expression and metabolite changes can reveal important insights into the interaction between inorganic ions and plant metabolism. The development of novel tools for the standardised analysis of a wide range of metabolites in plant tissues ('metabolomics') allows us to carry out a detailed study of the role of K availability for plant metabolism. In particular, the high sensitivity and the high throughput of metabolomics techniques facilitate a good resolution of metabolite changes in time and space. Such data set will give us for the first time the opportunity to identify metabolic components of mineral deficiency at three distinct levels: (1) primary enzymatic stress targets, (2) metabolic stress signals and (3) adaptive responses involved in re-programming primary and secondary metabolism.
农作物大量营养素氮、磷和钾 (NPK) 的均衡供应对于粮食生产至关重要,但在田间往往无法实现。特别是在发展中国家,钾肥的施肥被忽视,而氮肥的施肥已导致钾肥的土壤严重枯竭。世界粮食生产还受到因灌溉造成的钠(Na)输入导致农田次生盐碱化加剧的威胁。钠胁迫常常导致钾缺乏,因为两种离子竞争进入植物和植物内的相同运输途径。 K 在生长和新陈代谢中发挥重要作用。田间充足的钾供应可以保护作物免受草食动物的攻击、真菌病害和非生物胁迫(例如干旱和盐度),并且有证据表明钾可以提高氮的利用效率。与钾缺乏相关的问题很难在现场发现,因为明显的缺乏症状直到很晚才会出现,在这个阶段通常无法纠正这种情况。这是因为植物在不同的组织和细胞区室之间有效地重新分配钾。 K 稳态依赖于植物识别土壤和组织离子状态以及在细胞和组织之间交换生物​​信号的能力。如果我们能够解开这个隐藏的通讯系统并识别钾胁迫的生物标记,我们就可以开发一个预警系统。因此,了解主要胁迫目标和缺钾信号对于预测和治疗现场与钾相关的问题将提供宝贵的帮助。在我们的实验室中,我们最近发现了一大组基因,这些基因会根据外部钾供应而改变其表达。许多 K 调节基因编码代谢酶,例如催化糖和氨基酸代谢或硫和硝酸盐同化反应的酶。我们还发现植物激素茉莉酸在控制钾诱导的基因表达变化方面发挥着核心作用,茉莉酸以其在植物防御昆虫和真菌中的功能而闻名。这些发现首次在个体基因和信号化合物水平上将植物无机离子胁迫与植物代谢和病原体防御联系起来。为了进一步表征钾诱导的代谢事件变化,我们测量了缺钾植物中的氨基酸水平。我们观察到谷氨酰胺的增加,这解释了之前观察到的硝酸盐转运蛋白的下调,这反过来可能是缺钾作物氮用量减少的原因。在钾饥饿期间观察到的谷氨酸减少可能表明该氨基酸的合成受到损害,因此催化该反应的酶 (GOGAT) 可能是钾胁迫的早期目标。因此,我们相信,有关钾(和钠)胁迫诱导的基因表达和代谢物变化的综合信息可以揭示无机离子与植物代谢之间相互作用的重要见解。用于对植物组织中多种代谢物进行标准化分析(“代谢组学”)的新工具的开发使我们能够对钾的有效性对植物代谢的作用进行详细研究。特别是代谢组学技术的高灵敏度和高通量有助于很好地解析代谢物在时间和空间上的变化。这样的数据集将使我们第一次有机会在三个不同水平上识别矿物质缺乏的代谢成分:(1)主要酶应激目标,(2)代谢应激信号和(3)参与重新编程初级的适应性反应和次生代谢。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of potassium nutrition on pest and disease resistance in plants.
钾营养对植物抗病虫害的影响。
  • DOI:
    10.1111/j.1399-3054.2008.01075.x
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    A. Amtmann;S. Troufflard;P. Armengaud
  • 通讯作者:
    P. Armengaud
Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply.
冠素不敏感 1 (COI1) 介导拟南芥对外部钾供应的转录反应。
  • DOI:
    http://dx.10.1093/mp/ssq012
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Armengaud P
  • 通讯作者:
    Armengaud P
Regulation of macronutrient transport.
大量营养素运输的调节。
  • DOI:
    10.1111/j.1469-8137.2008.02666.x
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Amtmann;M. Blatt
  • 通讯作者:
    M. Blatt
Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid.
对比营养与疾病的关系:大麦叶中的钾梯度对两种对茉莉酸具有不同敏感性的真菌病原体具有相反的影响。
  • DOI:
    http://dx.10.1111/pce.13350
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davis JL
  • 通讯作者:
    Davis JL
Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation.
拟南芥根结构的自然变异揭示了对钾饥饿的补充适应策略。
  • DOI:
    http://dx.10.1104/pp.112.211144
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kellermeier F
  • 通讯作者:
    Kellermeier F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Amtmann其他文献

Procédés et moyens pour augmenter la tolérance aux contraintes et la biomasse dans des plantes
增强耐受性、限制性和植物生物质的过程和方法
  • DOI:
  • 发表时间:
    2014-01-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Amtmann;M. Hannah;Veronique Gossele;Manuel Lopez;Giorgio Perrella;Christoph Verduyn
  • 通讯作者:
    Christoph Verduyn

Anna Amtmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Amtmann', 18)}}的其他基金

ABA transport at the nexus of nutrient deficiency and water stress in plants
ABA 转运与植物营养缺乏和水分胁迫的关系
  • 批准号:
    BB/X002721/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
IRGA-Live Clamp: An integrated infrared gas-analysis platform to investigate systemic signalling within the plant canopy
IRGA-Live Clamp:用于研究植物冠层内系统信号传导的集成红外气体分析平台
  • 批准号:
    BB/W020289/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
Exploring chemical 'de-priming' and quantitative genetics to improve growth and yield of soybean under abiotic stress.
探索化学“去启动”和定量遗传学,以改善非生物胁迫下大豆的生长和产量。
  • 批准号:
    BB/R019894/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
Perception and integration of nutritional signals in plant root systems: Solving the mystery of K-Fe-P interactions.
植物根系中营养信号的感知和整合:解决 K-Fe-P 相互作用之谜。
  • 批准号:
    BB/N018508/1
  • 财政年份:
    2016
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
The novel gene 'Histone Deacetylase Complex 1' enhances plant growth and abiotic stress tolerance; where, when and with whom?
新基因“组蛋白脱乙酰酶复合物 1”增强植物生长和非生物胁迫耐受性;
  • 批准号:
    BB/K008218/1
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
  • 批准号:
    EP/J004871/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
  • 批准号:
    EP/J004871/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Research Grant

相似国自然基金

植物多酚-铁离子间光电子转移特性及其催化可控分子聚合机制的研究
  • 批准号:
    32301534
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
离子型稀土尾矿地先锋植物功能性状介导的生态恢复机制
  • 批准号:
    42377006
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
内陆盐沼湿地植物离子吸收运输分配对碳密度的影响
  • 批准号:
    42361008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
新型离子通道卫青(WTS)调控植物免疫的机制
  • 批准号:
    32330056
  • 批准年份:
    2023
  • 资助金额:
    219 万元
  • 项目类别:
    重点项目
磷脂酸PA结合离子通道蛋白MSL10调控植物渗透感知的分子机理
  • 批准号:
    32370293
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The Unrecognized Role of Phosphate-accumulating Bacteria in Oral Health
磷酸盐积累细菌在口腔健康中的作用未被认识
  • 批准号:
    10170313
  • 财政年份:
    2018
  • 资助金额:
    $ 33.38万
  • 项目类别:
The Unrecognized Role of Phosphate-accumulating Bacteria in Oral Health
磷酸盐积累细菌在口腔健康中的作用未被认识
  • 批准号:
    10406989
  • 财政年份:
    2018
  • 资助金额:
    $ 33.38万
  • 项目类别:
Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
  • 批准号:
    8610770
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
  • 批准号:
    8729445
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
Oxarane-Acrylate System to Double the Clinical Service Life of Restorative Resins
氧杂环丙烷-丙烯酸酯系统可将修复树脂的临床使用寿命延长一倍
  • 批准号:
    9130154
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了