GLOBAL-Promoting Research Partnership in Fabrication of Advanced III-nitride Optoelectronics With Ultra Energy Efficiency Using Nanotechnology

全球促进利用纳米技术制造具有超高能效的先进III族氮化物光电子器件的研究伙伴关系

基本信息

  • 批准号:
    EP/K004220/1
  • 负责人:
  • 金额:
    $ 40.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Our research has the potential to meet two major challenges which human beings are facing: energy crisis and climate change. Currently, the energy consumed due to general illumination accounts for 29% of the world's total energy consumption. Although the energy provided by an hour of solar radiation on the Earth is equivalent to the world's total energy consumption per year, solar cells contribute only 0.03% to the figure. Therefore, it is necessary to develop new technologies to achieve ultra energy-efficient solid-state lighting sources and solar cells. The appearance of III-nitride semiconductors provides human beings with such a unique opportunity, as the light emission from III-nitrides covers the complete visible spectrum and also a major part of the solar spectrum. It has been predicted that III-nitride LEDs if used in our homes and offices could save 15% of the electricity generated at power stations, 15% of the fuel used, and 15% reduction in carbon emission.For more than a decade substantial efforts have been devoted to developing high-brightness III-nitride LEDs (HB-LEDs) worldwide. Consequently, major achievements have been made. However, a fatal problem has appeared, and has to be solved urgently. That is the well-known "efficiency droop": the efficiency of HB-LEDs shows the highest value only at a low injection current, and a further increase in injection current leads to a significant reduction in efficiency. This is the "efficiency droop". Under the injection current required for practical applications, the efficiency drops down to >50% of the peak value, meaning that a large amount of energy has been wasted. This also causes a severe reliability issue, as the wasted energy leads to an elevated temperature of the devices and thus severe degradation in device performance. The physical origins of the efficiency droop are very complicated and thus unclear. So far, there is not any efficient solution. In the project, the scientists from 6 world-leading teams at University of Sheffield, Yale University (USA), Nanjing University (China) and Technology University of Braunschweig (Germany) are pooling their unique but complementary expertise, proposing to employ a number of advanced nanotechnologies and epitaxial growth techniques in order to explore the fundamental issue, and then achieve ultra energy-efficient LEDs. For solar cells, it has been predicted that an energy-conversion efficiency of >50% can be achieved with III-nitrides, which is much higher than that of any current solar cell. The solar energy-conversion efficiency of current III-nitride solar cells is extremely low, only ~3% in the best report due to a number of technologic challenges. We will combine our complementary expertise from 6 teams to tackle the challenges by employing a similar nanotechnology to fabricate into nanorod array solar cells on the epiwafers with a thick super-lattice structure on the GaN substrates with ultra-high crystal quality.
我们的研究有可能应对人类面临的两个主要挑战:能源危机和气候变化。目前,由于一般照明而消耗的能源占世界总能源消耗的29%。尽管地球上一个太阳辐射提供的能量相当于每年全球的总能源消耗,但太阳能电池对该数字仅贡献0.03%。因此,有必要开发新技术来实现超节能的固态照明来源和太阳能电池。 III二硝酸半导体的出现为人类提供了如此独特的机会,因为III氮化物的光发射涵盖了完整的可见光谱,也涵盖了太阳光谱的主要部分。据预测,如果在我们的家中使用III氮化物LED,可以节省电站产生的15%的电力,15%所使用的燃料和减少15%的碳排放量。十年以上的实质性努力致力于开发III-NENRIDE LEDS(HB-hb-devides)。因此,已经取得了重大成就。但是,已经出现了致命的问题,必须紧急解决。这是众所周知的“效率下垂”:HB LED的效率仅在低注射电流时显示出最高的值,并且进一步增加的注射电流导致效率显着降低。这是“效率下垂”。在实际应用所需的注入电流下,效率下降到峰值的50%> 50%,这意味着大量能量已经浪费了。这也引起了严重的可靠性问题,因为浪费的能量导致设备温度升高,因此设备性能严重降解。效率下垂的物理起源非常复杂,因此不清楚。到目前为止,还没有任何有效的解决方案。在该项目中,来自谢菲尔德大学,耶鲁大学(美国),南京大学(中国)和布劳恩斯奇韦格(Braunschweig)(德国)的6个世界领先团队的科学家正在汇集其独特但互补的专业知识,并建议采用许多先进的纳米技术和外生增长技术来探索基金会的能力。对于太阳能电池,已经预测,使用III-硝酸盐可以实现> 50%的能量转换效率,这远高于任何当前太阳能电池。当前III氮化物太阳能电池的太阳能转换效率极低,由于许多技术挑战,最佳报告中只有3%。我们将通过使用类似的纳米技术来结合6个团队的补充专业知识,以应对挑战,以在Epiwafers上制造成纳米棒阵列太阳能电池,并在GAN底物上具有超高晶体质量的GAN底物上具有较厚的超级粘性结构。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm
  • DOI:
    10.1016/j.solmat.2017.10.005
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    J. Bai;Y. Gong;Z. Li;Yun Zhang;Tao Wang
  • 通讯作者:
    J. Bai;Y. Gong;Z. Li;Yun Zhang;Tao Wang
Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells
  • DOI:
    10.1016/j.solmat.2015.10.026
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    J. Bai;M. Athanasiou;Tao Wang
  • 通讯作者:
    J. Bai;M. Athanasiou;Tao Wang
Effect of an ITO current spreading layer on the performance of InGaN MQW solar cells
  • DOI:
    10.1002/pssc.201510171
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bai;M. Athanasiou;Tao Wang
  • 通讯作者:
    J. Bai;M. Athanasiou;Tao Wang
Efficiency enhancement of InGaN/GaN solar cells with nanostructures
纳米结构 InGaN/GaN 太阳能电池的效率提升
  • DOI:
    10.1063/1.4864640
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bai J
  • 通讯作者:
    Bai J
Characterization of thickness, elemental distribution and band-gap properties in AlGaN/GaN quantum wells by aberration-corrected TEM/STEM
通过像差校正 TEM/STEM 表征 AlGaN/GaN 量子阱中的厚度、元素分布和带隙特性
  • DOI:
    10.1088/1742-6596/371/1/012014
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amari H
  • 通讯作者:
    Amari H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Wang其他文献

Ferroelectric and piezoelectric response in (100)-oriented Mn-doped Bi0.5Na0.5TiO3-BaTiO3 thin films
(100) 取向 Mn 掺杂 Bi0.5Na0.5TiO3-BaTiO3 薄膜中的铁电和压电响应
  • DOI:
    10.1007/s10853-020-04593-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Zihao Li;Xiaoli Huang;Yuchun Wang;Yanxue Tang;Xiangyong Zhao;Feifei Wang;Tao Wang;Wangzhou Shi;Zhihua Duan
  • 通讯作者:
    Zhihua Duan
Reduced miscibility between highly compatible non-fullerene acceptor and donor enables efficient ternary organic solar cells
高度相容的非富勒烯受体和供体之间的混溶性降低,可实现高效的三元有机太阳能电池
  • DOI:
    10.1016/j.polymer.2021.124322
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shili Cheng;Liang Wang;Chuanhang Guo;Donghui Li;Jinlong Cai;Weiqiang Miao;Baocai Du;Pang Wang;Dan Liu;Tao Wang
  • 通讯作者:
    Tao Wang
Field Observation Evidence for Kink Points in the Vertical Kinetic Energy Flux Profiles of Wind‐Blown Sand Over Gobi and Its Significance
戈壁风沙垂直动能通量剖面扭结点的现场观测证据及其意义
  • DOI:
    10.1029/2020gl091224
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Lihai Tan;Jianjun Qu;Tao Wang;Kai Zhang;Zhishan An
  • 通讯作者:
    Zhishan An
Velocity Distribution Inversion Method Based on the RANS Equations Using Microwave Doppler Radar
基于RANS方程的微波多普勒雷达速度分布反演方法
Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River
长江上游小流域一次生活污水梯形植被排水沟的营养物去除
  • DOI:
    10.1111/wej.12225
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Mathieu Nsenga Kumwimba;Mawuli Dzakpasu;Bo Zhu;Tao Wang;Lunda Ilunga;Diana Kavidia Muyembe
  • 通讯作者:
    Diana Kavidia Muyembe

Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Wang', 18)}}的其他基金

Monolithic on-chip integration of microscale laser diodes (uLDs) and electronics for micro-displays and visible light communications
用于微型显示器和可见光通信的微型激光二极管 (uLD) 和电子器件的单片片上集成
  • 批准号:
    EP/W003244/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
ERI: Dynamic Wireless Channel Pad: A Lightweight and Effective Security Design Towards Non-cryptographic IoT Confidentiality
ERI:动态无线通道垫:面向非加密物联网机密性的轻量级且有效的安全设计
  • 批准号:
    2139028
  • 财政年份:
    2022
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Standard Grant
Monolithic On-chip Integration of Electronics & Photonics Using III-nitrides for Telecoms
单片片上电子集成
  • 批准号:
    EP/T013001/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Ultra-Stable High-Performance Single Nanolasers
超稳定高性能单纳米激光器
  • 批准号:
    EP/P006361/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Advanced III-nitride materials for next generation UV emitters used in water purification, environmental protection and local network communication
用于水净化、环境保护和本地网络通信的下一代紫外线发射器的先进III族氮化物材料
  • 批准号:
    EP/M003132/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Next generation white LEDs using hybrid inorganic/organic semiconductor nanostructures for general illumination and wireless communication
使用混合无机/有机半导体纳米结构的下一代白光 LED 用于一般照明和无线通信
  • 批准号:
    EP/L017024/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Ultra energy efficient III-nitride/polymer hybrid white LEDs using nanotechnology
采用纳米技术的超节能 III 族氮化物/聚合物混合白光 LED
  • 批准号:
    EP/H004602/1
  • 财政年份:
    2010
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Fabrication of first 337 nm laser diodes for biological applications
制造首款用于生物应用的 337 nm 激光二极管
  • 批准号:
    EP/F03363X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant
Growth, fabrication and physical properties of nitride quantum dot based optical devices: light emitting diodes, laser diodes and photodetectors
基于氮化物量子点的光学器件的生长、制造和物理特性:发光二极管、激光二极管和光电探测器
  • 批准号:
    EP/C543521/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Research Grant

相似国自然基金

神经母细胞瘤EDF1促进神经节苷脂贮积诱导CD8+T细胞耗竭的机制研究
  • 批准号:
    82373421
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
VSMC机械感受器TRPM7调控H3S10p/NOTCH3促进冠状动脉侧支生成的作用与机制研究
  • 批准号:
    82300366
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GFRα-S100A8/A9-TLR4通路介导胰腺癌细胞与施旺细胞相互作用调控神经炎症促进肿瘤进展的机制研究
  • 批准号:
    82303265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水热炭溶解性有机质促进淹水土壤残留磷素释放机制及分子特征研究
  • 批准号:
    42307434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of MER/PROS1 in promoting stromal induced emergence from metastatic melanoma dormancy
MER/PROS1 在促进基质诱导的转移性黑色素瘤休眠中的作用
  • 批准号:
    10526077
  • 财政年份:
    2022
  • 资助金额:
    $ 40.42万
  • 项目类别:
The role of MER/PROS1 in promoting stromal induced emergence from metastatic melanoma dormancy
MER/PROS1 在促进基质诱导的转移性黑色素瘤休眠中的作用
  • 批准号:
    10813230
  • 财政年份:
    2022
  • 资助金额:
    $ 40.42万
  • 项目类别:
Multilevel Approaches for Promoting Physical Activity in Rural Communities
促进农村社区体育活动的多层次方法
  • 批准号:
    9925181
  • 财政年份:
    2017
  • 资助金额:
    $ 40.42万
  • 项目类别:
Multilevel Approaches for Promoting Physical Activity in Rural Communities
促进农村社区体育活动的多层次方法
  • 批准号:
    10177877
  • 财政年份:
    2017
  • 资助金额:
    $ 40.42万
  • 项目类别:
Understanding, measuring, and promoting crucial 21st century skills: Global communication, deep learning, and critical thinking competencies
理解、衡量和提升 21 世纪的关键技能:全球沟通、深度学习和批判性思维能力
  • 批准号:
    15H01976
  • 财政年份:
    2015
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了