Flap Noise

襟翼噪声

基本信息

  • 批准号:
    EP/I017747/2
  • 负责人:
  • 金额:
    $ 16.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

With the projected demand for air transport set to double the world aircraft fleet by 2020, the task of reducing noise levels of each individual aircraft is becoming extremely urgent. Significant technological advances in the reduction of turbomachinery noise alone has been achieved over the last 20 years due to the implementation of advanced fan designs and the use of jet engines with ultra high bypass ratios. Because of these advances, airframe noise and non-traditional noise sources due to the engine installation effects are becoming a major limiting factor in the overall reduction of the aircraft noise. In turn, flap noise is a very important component of airframe noise for approach conditions and, as a recent experimental study demonstrated, the flap interaction with the jet can also produce very significant noise for take-off conditions. This puts the viability of many conventional aircraft, especially those with the engine-under-the-wing configuration, in jeopardy. At the same time, as recognised by the international aeroacoustic community, the mechanisms of flap noise still remain very poorly understood. In the new project, we will develop a new physically insightful method for understanding and predicting both broadband and tonal flap noise. In this work we will combine and extend the two models developed in the framework of two previous successful EPSRC-funded aeroacoustic projects into a new unified noise prediction scheme. This scheme will capture both the tonal and broadband noise components of the high-lift devices, such as wing flaps and flaperons and their interaction with the turbulent jet. The new model will have an exact match between the sound sources predicted by Computational Fluid Dynamics (CFD) tools and far-field propagation using a mixture of mathematical modelling tools. Using the new model we will systematically study the mechanisms of flap noise and investigate the effect of control devices, such as porous flap edge surfaces and vortex generators installed on the flap trailing edge, on noise.This Project is a well-balanced combination of advanced numerical modelling, high performance computing and state-of-the art acoustic analysis methods. All investigators are experts in their fields - aeroacoustics, aerodynamics, turbulence modelling and numerical methods. Thus a strong side of the Project is its multi-disciplinary and collaborative nature that ensures synergy and cross-fertilisation of ideas and methods.The planned work has great environmental importance, aimed directly at improving the quality of people's lives in the vicinity of airports. It also has commercial importance, potentially safeguarding UK jobs in a high technology area, and its results will be of interest for the leading UK airspace industry such as Airbus and Rolls-Royce plc. This is because greater physical understanding and valuable predictive technology for acoustics design will be created. These should ultimately result in more environmentally friendly, and hence commercially competitive, aircraft that can be brought to the market more quickly and at lower cost. The research will be disseminated via publications in high-impact journals and presentations at key international conferences. The international collaborative context of this project enhances the potential dissemination paths. The projects results will be also disseminated through other specialist meetings, such as at Royal Society Meetings. In addition, a series of seminar talks will be arranged for to further disseminate the projects results in leading European aeroacoustics centres. The international collaborative context of this project will enhance the potential dissemination paths. It is also expected that the new highly trained computational fluid dynamicist/aerodynamicist/aeroacoustician produced in the project will be disseminating the post-project results in her/his further work.
预计到 2020 年,航空运输的需求将使世界飞机机队数量增加一倍,降低每架飞机的噪音水平的任务变得极为紧迫。过去 20 年来,由于先进风扇设计的实施和超高涵道比喷气发动机的使用,仅在降低涡轮机械噪声方面就取得了重大技术进步。由于这些进步,由于发动机安装效应而产生的机身噪声和非传统噪声源正在成为总体降低飞机噪声的主要限制因素。反过来,襟翼噪声是进近条件下机身噪声的一个非常重要的组成部分,正如最近的一项实验研究表明,襟翼与喷气机的相互作用也会在起飞条件下产生非常显着的噪声。这使得许多传统飞机的生存能力受到威胁,尤其是那些采用机翼下发动机配置的飞机。与此同时,正如国际气动声学界所认识到的那样,人们对襟翼噪声的机制仍然知之甚少。在新项目中,我们将开发一种新的物理洞察方法来理解和预测宽带和音调瓣噪声。在这项工作中,我们将结合并扩展在之前两个成功的 EPSRC 资助的气动声学项目框架中开发的两个模型,形成一个新的统一噪声预测方案。该方案将捕获高升力装置的音调和宽带噪声分量,例如襟翼和襟副翼以及它们与湍流射流的相互作用。新模型将通过计算流体动力学(CFD)工具预测的声源与使用数学建模工具混合的远场传播之间精确匹配。利用新模型,我们将系统地研究襟翼噪声的机理,并研究多孔襟翼边缘表面和安装在襟翼后缘的涡流发生器等控制装置对噪声的影响。该项目是先进技术的均衡组合。数值建模、高性能计算和最先进的声学分析方法。所有研究人员都是各自领域的专家——空气声学、空气动力学、湍流建模和数值方法。因此,该项目的优势在于其多学科和协作性质,可确保思想和方法的协同作用和交叉融合。规划的工作具有重大的环境重要性,其直接目的是提高机场附近人们的生活质量。它还具有商业重要性,有可能保护英国在高科技领域的就业机会,其结果将引起空中客车公司和劳斯莱斯公司等英国领先空域工业的兴趣。这是因为将会为声学设计创造更深入的物理理解和有价值的预测技术。这些最终将带来更加环保、因而具有商业竞争力的飞机,并且可以更快、更低成本地推向市场。该研究将通过高影响力期刊上的出版物和重要国际会议上的演讲来传播。该项目的国际合作背景增强了潜在的传播路径。该项目的结果还将通过其他专家会议(例如皇家学会会议)进行传播。此外,还将安排一系列研讨会,以在欧洲领先的气动声学中心进一步传播项目成果。该项目的国际合作背景将增强潜在的传播路径。预计该项目中产生的新的训练有素的计算流体动力学家/空气动力学家/空气声学学家将在她/他的进一步工作中传播项目后的成果。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of free stream effects on jet noise generation and propagation within the Goldstein acoustic analogy approach for fully turbulent jet inflow boundary conditions
在完全湍流射流流入边界条件的 Goldstein 声学类比方法中,自由流效应对射流噪声产生和传播的影响
GPU CABARET Flow and Noise Solutions of an Installed Jet Configuration
已安装喷射配置的 GPU CABARET 流量和噪声解决方案
  • DOI:
    http://dx.10.2514/6.2020-2563
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markesteijn A
  • 通讯作者:
    Markesteijn A
On the effect of Mach number on subsonic jet noise sources in the Goldstein acoustic analogy model
Goldstein声类比模型中马赫数对亚音速喷气噪声源的影响
Advances in aeroacoustics research: recent developments and perspectives
气动声学研究进展:最新进展和前景
Application of Azimuthal Decomposition Technique for Validation of CAA Methods
应用方位角分解技术验证 CAA 方法
  • DOI:
    http://dx.10.2514/6.2013-2238
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faranosov G
  • 通讯作者:
    Faranosov G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Karabasov其他文献

Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space
  • DOI:
    10.1039/c3fd00159h
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Evgen Pavlov;Makoto Taiji;Arturs Scukins;Anton Markesteijn;Sergey Karabasov;Dmitry Nerukh
  • 通讯作者:
    Dmitry Nerukh

Sergey Karabasov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Karabasov', 18)}}的其他基金

Aeroacoustics of Dynamic Stall
动态失速气动声学
  • 批准号:
    EP/X017435/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
SURFACE TREATMENTS FOR NEXT GENERATION QUIET AEROFOILS
下一代静音机翼的表面处理
  • 批准号:
    EP/V038222/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
JINA: Jet Installation Noise Abatement
JINA:喷射装置噪音消除
  • 批准号:
    EP/S002065/1
  • 财政年份:
    2019
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
G8 Multilateral Research Funding INGENIOUS
G8 多边研究资助 独创性
  • 批准号:
    EP/J004308/2
  • 财政年份:
    2012
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
G8 Multilateral Research Funding INGENIOUS
G8 多边研究资助 独创性
  • 批准号:
    EP/J004308/2
  • 财政年份:
    2012
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
G8 Multilateral Research Funding INGENIOUS
G8 多边研究资助 独创性
  • 批准号:
    EP/J004308/1
  • 财政年份:
    2011
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
G8 Multilateral Research Funding INGENIOUS
G8 多边研究资助 独创性
  • 批准号:
    EP/J004308/1
  • 财政年份:
    2011
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
Flap Noise
襟翼噪声
  • 批准号:
    EP/I017747/1
  • 财政年份:
    2011
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant

相似国自然基金

非线性噪音驱动的非自治BBM方程拉回随机吸引子的稳定性
  • 批准号:
    12301303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
下丘Hcy通过PKC/CREB调控GABAAR在噪音性耳鸣发生中的作用与耳聋左慈丸干预机制研究
  • 批准号:
    82304854
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开放系统演化中环境噪音的表征及其在精密测量中的应用
  • 批准号:
    12374337
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
爪蟾噪音性听力损伤和再生修复的机制研究
  • 批准号:
    32370536
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
针对高噪音基因组测序数据的肿瘤演化推断算法开发及其应用研究
  • 批准号:
    82241236
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Fellowship
Ultra-low noise magnetic environments
超低噪声磁场环境
  • 批准号:
    ST/Y509978/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Research Grant
Aquatic Pollution from Light and Anthropogenic Noise: management of impacts on biodiversity
光和人为噪声造成的水生污染:生物多样性影响管理
  • 批准号:
    10098417
  • 财政年份:
    2024
  • 资助金额:
    $ 16.46万
  • 项目类别:
    EU-Funded
Noise-reduction mechanisms in jet engines: chevrons are the answer
喷气发动机的降噪机制:人字形就是答案
  • 批准号:
    DE240100933
  • 财政年份:
    2024
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了