Terahertz electron paramagnetic resonance: A window on biological exploitation of quantum mechanics

太赫兹电子顺磁共振:量子力学生物利用的窗口

基本信息

  • 批准号:
    EP/J002518/1
  • 负责人:
  • 金额:
    $ 96.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Everyone who reads a newspaper or watches the news on television will know that we are facing an energy crisis. The world's fossil-fuel energy reserves are dwindling and yet our thirst for energy is accelerating at an ever increasing rate. Scientists and engineers dream of solving this problem by harvesting the vast power of our Sun, storing its energy by breaking apart water and forming hydrogen gas. If only we could find an efficient and economical way of performing this chemical conversion the dream could become a reality. Our greatest hope today lies in harnessing the power of nature's own biological catalysts, enzymes, to promote desired chemical reactions. Enzymes are extremely efficient catalysts that allow chemical reactions to take place billions of times faster than normal. Unfortunately, enzymes are limited to the specific set of chemical reactions that they evolved to catalyse. Attempts to tailor enzymes to our needs have so far been disappointing. This is not surprising given our poor understanding of how they work. Conventional theory is unable to account for the incredible increases by which a reaction is speeded up by enzymes. A new emerging theory of enzyme catalysis suggests that if we had a window on this world we would see enzymes manipulating a phenomenon called quantum mechanical tunnelling to their advantage. We envisage chemical reactions overcoming the energy barrier that slows their progress, not by climbing over it, but by tunnelling directly through it. Even more strange, we think that enzymes might use their subtle vibrations to squeeze the energy barrier, reducing its thickness, to promote tunnelling and speed up the reaction. This project seeks to determine whether enzymes have indeed evolved to manipulate quantum mechanics, by using their movements to accelerate chemical reactions. In order to do this a novel instrument will be constructed to provide a unique window on this world. This instrument is based on a technique called Electron Paramagnetic Resonance (EPR), a cousin of the more familiar Magnetic Resonance Imaging (MRI) technology seen in hospitals. While existing instruments use microwave radiation, which limits their ability to distinguish features, this new instrument will use radiation that lies between the microwave and infra-red parts of the spectrum, so-called terahertz radiation. This will result in structural information being revealed in exquisite detail. In addition, flashes of terahertz radiation will be generated using pulses of laser light lasting less than one millionth of a millionth of a second enabling snap-shots to be taken of enzymes in action. The ability to watch these fast tunnelling processes is essential to our understanding of enzyme function and is far beyond the reach of existing instruments. Producing these action-packed enzyme movies with such high-definition structural information will rely on the precise timing between multiple bursts of terahertz radiation. To achieve these ambitious goals this project brings together a combination of industrial and academic collaborators with expertise in laser development, advanced EPR measurements and apparatus, and enzyme catalysis. Under my leadership, this project will provide knowledge crucially important to the successful exploitation of these remarkable biological catalysts.
每个阅读报纸或在电视上观看新闻的人都会知道我们面临着能源危机。世界上化石燃料的能源储量正在减少,但我们对能源的渴望正在以不断提高的速度加速。科学家和工程师梦想着通过收获阳光的巨大力量来解决这个问题,通过分解水并形成氢气来储存能量。如果我们能找到一种有效且经济的方法来执行这种化学转化,那么梦想就会成为现实。今天,我们最大的希望在于利用自然界自我生物催化剂酶的力量来促进所需的化学反应。酶是极有效的催化剂,可使化学反应发生数十亿倍的速度。不幸的是,酶仅限于它们演变为催化的特定化学反应集。迄今为止,试图根据我们的需求量身定制酶。鉴于我们对它们的工作方式的了解不足,这并不奇怪。常规理论无法解释酶加速反应加速反应的令人难以置信的增加。一种新的新兴酶催化理论表明,如果我们在这个世界上有一个窗口,我们会看到酶操纵一种称为量子机械隧穿的现象以使其优势。我们设想化学反应克服了能量障碍,而不是通过直接通过隧道来攀登它,从而减慢了它们的进度。更奇怪的是,我们认为酶可能会利用其微妙的振动来挤压能量屏障,减少其厚度,以促进隧道并加快反应。该项目旨在通过使用其运动加速化学反应来确定酶是否确实已经演变为操纵量子力学。为了做到这一点,将构建一种新颖的乐器,以在这个世界上提供一个独特的窗口。该仪器基于一种称为电子顺磁共振(EPR)的技术,这是医院中更熟悉的磁共振成像(MRI)技术的表弟。尽管现有仪器使用微波辐射(限制其区分特征的能力),但该新仪器将使用位于微波和红外部分之间的辐射,即所谓的Terahertz辐射。这将导致结构信息以精美的细节揭示。此外,将使用持续不到持续不到一百万秒的一百万秒钟的激光脉冲来产生Terahertz辐射的闪光,从而使快照的酶可以采取行动中的酶。观察这些快速隧道过程的能力对于我们对酶功能的理解至关重要,并且远远超出了现有仪器的范围。用如此高清结构信息产生这些动作包装的酶电影将取决于Terahertz辐射的多个爆发之间的精确时机。为了实现这些雄心勃勃的目标,该项目将工业和学术合作者与激光开发,高级EPR测量和设备以及酶催化的专业知识结合在一起。在我的领导下,该项目将为成功开发这些杰出的生物催化剂提供至关重要的知识。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic Structure of a Mixed-Metal Fluoride-Centered Triangle Complex: A Potential Qubit Component.
以氟化物为中心的混合金属三角配合物的电子结构:潜在的量子位组件。
  • DOI:
    10.1021/acs.inorgchem.5b01898
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Walsh JP
  • 通讯作者:
    Walsh JP
Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm
  • DOI:
    10.1063/1.4901904
  • 发表时间:
    2014-11-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Cliffe, M. J.;Rodak, A.;Jamison, S. P.
  • 通讯作者:
    Jamison, S. P.
Single-shot terahertz magneto-spectrometer
单次太赫兹磁谱仪
  • DOI:
    10.1109/irmmw-thz.2014.6956078
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spencer B
  • 通讯作者:
    Spencer B
Longitudinally polarized single-cycle terahertz pulses generated with high electric field strengths
  • DOI:
    10.1063/1.4953024
  • 发表时间:
    2016-05-30
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Cliffe, M. J.;Graham, D. M.;Jamison, S. P.
  • 通讯作者:
    Jamison, S. P.
Dielectric response of wurtzite gallium nitride in the terahertz frequency range
  • DOI:
    10.1016/j.ssc.2016.08.017
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Hibberd, M. T.;Frey, V.;Graham, D. M.
  • 通讯作者:
    Graham, D. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darren Graham其他文献

テーブルトップパルス磁場の開発と分光への応用
台式脉冲磁场的研制及其在光谱学中的应用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    野尻浩之;Tim Noe;Junichiro Kono;Darren Graham
  • 通讯作者:
    Darren Graham

Darren Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darren Graham', 18)}}的其他基金

Terahertz driven dielectric linacs
太赫兹驱动介电直线加速器
  • 批准号:
    ST/N00308X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Research Grant
Towards next-generation multi-junction solar absorbers - new THz probes of charge dynamics in quantum dots
迈向下一代多结太阳能吸收器——量子点电荷动力学的新型太赫兹探针
  • 批准号:
    ST/K001981/1
  • 财政年份:
    2012
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Research Grant

相似国自然基金

潜流带“地质电池”储存与释放电子的规律与受控机制
  • 批准号:
    42377056
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
魔角石墨烯中平带及关联电子态的研究与调控
  • 批准号:
    12304226
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
Mo与Kovar合金高熵强韧化电子束焊接及界面调控机理研究
  • 批准号:
    52375322
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
梯度介电常数近零复合材料的构筑与宽光谱发射率的电子声子协同调控
  • 批准号:
    52371139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
FeCoNiRu/SrRuO3界面电子强关联与电磁损耗增强机制
  • 批准号:
    52304410
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Protein Structure and Dynamics by Electron/Nuclear Paramagnetic Resonance
通过电子/核顺磁共振研究蛋白质结构和动力学
  • 批准号:
    DP240100273
  • 财政年份:
    2024
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Discovery Projects
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Standard Grant
Capital Award for Core Equipment 2022/23, National Research Facility for Electron Paramagnetic Resonance Spectroscopy
2022/23年度核心设备资本奖,国家电子顺磁共振波谱研究装置
  • 批准号:
    EP/X034623/1
  • 财政年份:
    2023
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Research Grant
New Classes of Electron Paramagnetic Resonance Imaging Probes With High-Spin Metal Complexes
具有高自旋金属配合物的新型电子顺磁共振成像探针
  • 批准号:
    10712009
  • 财政年份:
    2023
  • 资助金额:
    $ 96.33万
  • 项目类别:
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302782
  • 财政年份:
    2023
  • 资助金额:
    $ 96.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了