Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
基本信息
- 批准号:EP/I032355/1
- 负责人:
- 金额:$ 48.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific and economic interest in nanotechnology has grown in recent years. Within this the quest to produce tiny and highly tailored magnetic particles, or nanomagnets is crucial. Nanomagnets have a range of practical uses. Historically they have been used for information storage such as tapes and hard drives. Recently this has expanded with the development of 3D information storage systems providing high density data storage. There is much interest in the medical applications of nanomagnets. Magnetic particles are being developed to provide targeted medicine within the body. For example, if drugs are tied to nanomagnets at the molecular level then they can be directed by a magnet to specific sites within the patient. This allows a drug to be delivered to a specific area, without harming the rest of the body. Similarly, nanomagnets can be used in hyperthermic therapies. This is where, after being directed to specific tumour sites, magnetic particles are heated to either destroy a tumour or activate a drug. Such particles also already have used as image enhancers for diagnostic medicine. However, as nanotechnology grows, so too does the need to develop precisely engineered nanomagnets. Different applications demand different shapes and sizes of particles and different magnetic properties. Producing nanomagnets with highly controlled; composition, size and shapes, in large enough amounts to be of use to these industries, has therefore become a key goal of researchers.Biomineralisation is the process that occurs in living organisms to produce minerals such as bones. Because genetics control biomineralisation processes the materials produced exhibit very precise, uniform and intricate formations down to the nanoscale. Magnetotactic bacteria biomineralise high quality uniform nanoparticles of the iron-oxide magnetite within biological shells (or vesicles) called magnetosomes, within the bacterial cell. Because magnetosomes exhibit considerable uniformity and precision they present a novel and attractive route to produce high quality nanoparticles.However, the biomineralisation method produces inefficient yields for commercial production and is also not very flexible, as the cell strictly controls morphology and composition, so the particles cannot be easily adapted (e.g. maximum cobalt doping 1.4%).In order to synthesise precision customised magnetic nanoparticles, we will explore a biomimetic approach where we take inspiration from nature to develop a nano-magnetite precipitation system within artificial magnetosome vesicles outside the cell. We will perform a simple ambient temperature chemical precipitation of magnetite within nano-vesicles to help control the particle size and incorporate biomineralisation proteins into the interior of the vesicles to further impose biologically precise morphology over the particles. The system will combine all the benefits of biomineralisation such as morphological precision and a biocompatible coating, with all the benefits of a chemical precipitation such as high yields and a more malleable system with respect to variation, so particles can be customised.Additionally this formation technique uses environmentally friendly conditions and the addition of a biocompatible lipid coating to the particles is also highly advantageous for healthcare applications.
近年来,纳米技术对纳米技术的科学和经济兴趣已经增长。在此过程中,要产生微小且高度定制的磁性颗粒,否则纳米磁体至关重要。纳米磁体具有一系列实际用途。从历史上看,它们已用于信息存储,例如磁带和硬盘驱动器。最近,随着提供高密度数据存储的3D信息存储系统的开发,这扩展了。对纳米磁铁的医疗应用有很大的兴趣。正在开发磁性颗粒以在体内提供靶向药物。例如,如果将药物与分子水平的纳米磁铁绑定,则可以用磁铁将其引导到患者内的特定部位。这样可以将药物输送到特定区域,而不会损害身体的其余部分。同样,纳米磁铁可用于高温疗法。这是将磁性颗粒引向特定的肿瘤部位后,加热磁性颗粒以破坏肿瘤或激活药物。这些颗粒也已经用作诊断医学的图像增强剂。但是,随着纳米技术的增长,需要开发精确设计的纳米磁铁的需求也是如此。不同的应用需要不同的形状和尺寸的颗粒和不同的磁性特性。产生具有高度控制的纳米磁铁;因此,构图,大小和形状很大程度上可以用于这些行业,因此已成为研究人员的关键目标。生物矿化是在生物体中发生的过程,可以生产诸如骨骼之类的矿物质。由于遗传学控制生物矿化过程,产生的材料表现出非常精确,均匀和复杂的地层,直至纳米级。磁性细菌在生物壳(或囊泡)中生物介绍的高质量均匀纳米颗粒在细菌细胞内称为磁体。因为磁体表现出相当大的统一性和精确度,所以它们提出了一种新颖而有吸引力的产生高质量纳米颗粒的途径。纳米颗粒,我们将探索一种仿生方法,我们从自然中汲取灵感来在细胞外的人造磁体囊泡中开发纳米磁铁矿沉淀系统。我们将执行纳米壁画中磁铁矿的简单环境温度化学沉淀,以帮助控制粒径,并将生物矿化蛋白纳入囊泡内部,以进一步在颗粒上施加生物学上精确的形态。该系统将结合生物矿化的所有好处,例如形态学精度和生物相容性涂层,以及化学沉淀的所有好处,例如高产量和对变化的更可延展的系统,因此可以自定义粒子。因此,可以在环境友好的条件上进行添加,并添加了生物友好的效果,并具有高度兼容的效果。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Staniland其他文献
Biomagnetic Recovery of Selenium: Bioaccumulating of Selenium Granules in Magnetotactic Bacteria
硒的生物磁回收:趋磁细菌中硒颗粒的生物富集
- DOI:
10.1128/aem.00508-16 - 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Nanoparticle biosynthesis: An accommodating host.
纳米颗粒生物合成:适应性宿主。
- DOI:
10.1038/nnano.2014.45 - 发表时间:
2014 - 期刊:
- 影响因子:38.3
- 作者:
Sarah Staniland - 通讯作者:
Sarah Staniland
Multi-scale Modeling for Life-Cycle Management of Concrete Structures
混凝土结构生命周期管理的多尺度建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga;前川宏一 - 通讯作者:
前川宏一
Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria
趋磁细菌中硒颗粒的生物磁回收和生物富集
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Sarah Staniland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Staniland', 18)}}的其他基金
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032355/2 - 财政年份:2013
- 资助金额:
$ 48.86万 - 项目类别:
Research Grant
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/2 - 财政年份:2013
- 资助金额:
$ 48.86万 - 项目类别:
Research Grant
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/1 - 财政年份:2010
- 资助金额:
$ 48.86万 - 项目类别:
Research Grant
相似国自然基金
若干羊毛甾烷型螺环三萜的仿生合成研究
- 批准号:22371142
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿生酶促可逆糖基修饰新策略辅助蛋白质化学合成
- 批准号:22377118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿生合成木质素抗氧化活性及其与单体构效关系研究
- 批准号:32301543
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于家族天然产物仿生合成策略和金属催化环加成反应的天然产物全合成
- 批准号:22331001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
高性能仿生蛛丝蛋白重复单元特征基序的理性设计及其生物合成研究
- 批准号:22308159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 48.86万 - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2403736 - 财政年份:2024
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant