Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
基本信息
- 批准号:BB/H005412/2
- 负责人:
- 金额:$ 13.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific and economic interest in nanotechnology has grown in recent years. Within this the quest to produce tiny and highly tailored magnetic particles, or nanomagnets is crucial. Nanomagnets have a range of practical uses. Historically they have been used for information storage such as tapes and hard drives. Recently this has expanded, with the development of 3D information storage systems providing high density data storage. There is also much interest in the medical applications of nanomagnets. Magnetic particles are being developed to provide targeted medicine within the body. For example, if drugs are tied to nanomagnets at the molecular level then they can be directed by a magnet to specific sites within the patient. This allows a drug to be delivered to a specific area, without harming the rest of the body. Similarly, nanomagnets can be used in hyperthermic therapies. This is where, after being directed to specific tumour sites, magnetic particles are heated to either destroy a tumour or activate a drug. However, as nanotechnology grows, so too does the need to develop precisely engineered nanomagnets. Different applications demand different shapes and sizes of particles and different magnetic properties. Controlling the composition and dimensions of nanomagnets has therefore become a key goal of researchers. Biomineralisation is the process that occurs in living organisms to produce minerals such as bones. Because genetics control biomineralisation processes the materials produced exhibit very precise, uniform and intricate formations down to the nano-scale. Furthermore, if the genetics are understood it may be possible to change with precision the nature of biomineralised materials. Magnetotactic bacteria biomineralise high quality and uniform nanoparticles of the iron-oxide magnetite within biological fatty shells (or vesicles) within the bacterial cell (termed magnetosomes). Because magnetosomes exhibit considerable uniformity and precision they present a novel and attractive route to produce high quality nanoparticles. However, the biomineralisation method can be inefficient for commercial production and is restricted to the specifications imposed by the bacterial cell leaving little flexibility for further modifications. A protein found to be involved in making nanomagnets in the bacteria has previously been extracted, and mass produced (expressed) and used in a chemical precipitation of magnetic particles. The protein was found to control the particle's size and shape even in this chemical production outside the bacterial cell. This research will identify biomineralisation proteins from the genetic information we have about magnetic bacteria, and investigate these proteins individually by expressing then and using them in a chemical formation of nanoparticles similar to the previous study. From this we will study in detail how the protein physically controls the size and shape of the particles using microscopy, spectroscopy and diffraction techniques. These will study the proteins while they are making the particles, so we can identify which parts of the proteins are responsible for the control over formation. With this information we will develop a combined chemical/biological method of making nanomagnetic particles. The new method will combine the benefits of the precision offered by biomineralisation, with the higher yields and more malleable system with respect to variation, offered by chemical synthesis. Furthermore, once the specific role of each protein has been ascertained, particles can be designed and custom-made with the addition of a recipe of the specific proteins and metal ions. This will offer more control over the particles' characteristics than the biological system. This biomimetic synthetic method will allow for the production of particles on a larger, and more commercially viable, scale than if the bacteria alone were used.
近年来,纳米技术对纳米技术的科学和经济兴趣已经增长。在此过程中,要产生微小且高度定制的磁性颗粒,否则纳米磁体至关重要。纳米磁体具有一系列实际用途。从历史上看,它们已用于信息存储,例如磁带和硬盘驱动器。最近,随着3D信息存储系统的开发提供了高密度数据存储。对纳米磁体的医疗应用也有很大的兴趣。正在开发磁性颗粒以在体内提供靶向药物。例如,如果将药物与分子水平的纳米磁铁绑定,则可以用磁铁将其引导到患者内的特定部位。这样可以将药物输送到特定区域,而不会损害身体的其余部分。同样,纳米磁铁可用于高温疗法。这是将磁性颗粒引向特定的肿瘤部位后,加热磁性颗粒以破坏肿瘤或激活药物。但是,随着纳米技术的增长,需要开发精确设计的纳米磁铁的需求也是如此。不同的应用需要不同的形状和尺寸的颗粒和不同的磁性特性。因此,控制纳米磁体的组成和尺寸已成为研究人员的关键目标。生物矿化是在生物体中发生的过程,以产生骨骼等矿物质。由于遗传学控制生物矿化过程,产生的材料表现出非常精确,均匀和复杂的地层,直到纳米尺度。此外,如果理解遗传学,则可以精确地改变生物矿化材料的性质。磁性细菌生物水中心在生物脂肪壳(或囊泡)内(称为磁体)内生物氧化物磁铁矿的高质量和均匀的纳米颗粒。由于磁体表现出相当大的均匀性和精度,因此它们提出了一种新颖而有吸引力的途径来产生高质量的纳米颗粒。但是,生物矿化方法可能对商业生产效率低下,并且仅限于细菌细胞所施加的规格,几乎没有灵活性进行进一步修饰。以前已经提取了一种蛋白质与细菌中的纳米磁铁有关,并产生(表达)并用于磁性颗粒的化学沉淀。发现该蛋白也可以控制颗粒的大小和形状,即使在细菌细胞外的化学产生中也可以控制颗粒的大小和形状。这项研究将从我们关于磁性细菌的遗传信息中鉴定出生物矿化蛋白,并通过表达并在与先前研究类似的纳米颗粒的化学形成中分别研究这些蛋白质。由此我们将详细研究蛋白质如何使用显微镜,光谱和衍射技术在物理控制颗粒的大小和形状。这些将在制作颗粒时研究蛋白质,因此我们可以确定蛋白质的哪些部分负责控制形成。通过这些信息,我们将开发一种制造纳米磁颗粒的化学/生物学方法。新方法将结合生物矿化提供的精度的好处,相对于化学合成提供的变异的产量较高,并且具有更高的可延展系统。此外,一旦确定了每种蛋白质的特定作用,就可以通过添加特定蛋白质和金属离子的配方来设计和定制颗粒。与生物系统相比,这将提供对颗粒特征的更多控制。与仅使用细菌相比,这种仿生合成方法将允许在更大,商业上更可行的尺度上产生颗粒。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nano- and micro-patterning biotemplated magnetic CoPt arrays.
- DOI:10.1039/c6nr03330j
- 发表时间:2016-06
- 期刊:
- 影响因子:6.7
- 作者:J. M. Galloway;J. M. Galloway;S. M. Bird;J. Talbot;P. Shepley;Ruth C. Bradley;Osama El-Zubir;Osama El-Zubir;D. Allwood;Graham J Leggett;J. Miles;Sarah S. Staniland;Kevin Critchley
- 通讯作者:J. M. Galloway;J. M. Galloway;S. M. Bird;J. Talbot;P. Shepley;Ruth C. Bradley;Osama El-Zubir;Osama El-Zubir;D. Allwood;Graham J Leggett;J. Miles;Sarah S. Staniland;Kevin Critchley
Ferrous Iron Binding Key to Mms6 Magnetite Biomineralisation: A Mechanistic Study to Understand Magnetite Formation Using pH Titration and NMR Spectroscopy.
- DOI:10.1002/chem.201600322
- 发表时间:2016-06-01
- 期刊:
- 影响因子:4.3
- 作者:Rawlings, Andrea E.;Bramble, Jonathan P.;Hounslow, Andrea M.;Williamson, Michael P.;Monnington, Amy E.;Cooke, David J.;Staniland, Sarah S.
- 通讯作者:Staniland, Sarah S.
Using a biomimetic membrane surface experiment to investigate the activity of the magnetite biomineralisation protein Mms6.
- DOI:10.1039/c5ra16469a
- 发表时间:2016-01-29
- 期刊:
- 影响因子:3.9
- 作者:Bird SM;Rawlings AE;Galloway JM;Staniland SS
- 通讯作者:Staniland SS
A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles.
- DOI:10.1039/c5tc03895b
- 发表时间:2016-05-14
- 期刊:
- 影响因子:0
- 作者:Bird SM;El-Zubir O;Rawlings AE;Leggett GJ;Staniland SS
- 通讯作者:Staniland SS
Macrofluidic Coaxial Flow Platforms to Produce Tunable Magnetite Nanoparticles: A Study of the Effect of Reaction Conditions and Biomineralisation Protein Mms6.
用于生产可调磁铁矿纳米颗粒的宏流体同轴流平台:反应条件和生物矿化蛋白 Mms6 影响的研究。
- DOI:10.3390/nano9121729
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Norfolk L
- 通讯作者:Norfolk L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Staniland其他文献
Nanoparticle biosynthesis: An accommodating host.
纳米颗粒生物合成:适应性宿主。
- DOI:
10.1038/nnano.2014.45 - 发表时间:
2014 - 期刊:
- 影响因子:38.3
- 作者:
Sarah Staniland - 通讯作者:
Sarah Staniland
Biomagnetic Recovery of Selenium: Bioaccumulating of Selenium Granules in Magnetotactic Bacteria
硒的生物磁回收:趋磁细菌中硒颗粒的生物富集
- DOI:
10.1128/aem.00508-16 - 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Multi-scale Modeling for Life-Cycle Management of Concrete Structures
混凝土结构生命周期管理的多尺度建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga;前川宏一 - 通讯作者:
前川宏一
Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria
趋磁细菌中硒颗粒的生物磁回收和生物富集
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Masayoshi Tanaka;William Knowles;Rosemary Brown;Nicole Hondow;Atsushi Arakaki;Stephen Baldwin;Sarah Staniland;Tadashi Matsunaga - 通讯作者:
Tadashi Matsunaga
Sarah Staniland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Staniland', 18)}}的其他基金
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032355/2 - 财政年份:2013
- 资助金额:
$ 13.44万 - 项目类别:
Research Grant
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032355/1 - 财政年份:2011
- 资助金额:
$ 13.44万 - 项目类别:
Research Grant
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/1 - 财政年份:2010
- 资助金额:
$ 13.44万 - 项目类别:
Research Grant
相似国自然基金
新疆猪源optrA/poxtA阳性肠球菌的分子流行病学调查及粪菌移植对其在肠道中传播的影响
- 批准号:32360910
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
- 批准号:82304238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海南省儿童急性呼吸道感染病原的分子流行病学调查及基于数学模型的流行特点研究
- 批准号:82360658
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向重大灾情精准调查的随机无人机路径规划问题研究
- 批准号:72304049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
- 批准号:
10730734 - 财政年份:2023
- 资助金额:
$ 13.44万 - 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes- NYU Clinical Center
了解并针对青年发病 2 型糖尿病的病理生理学 - 纽约大学临床中心
- 批准号:
10584108 - 财政年份:2023
- 资助金额:
$ 13.44万 - 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type2 Diabetes
了解并针对青年发病 2 型糖尿病的病理生理学
- 批准号:
10583413 - 财政年份:2023
- 资助金额:
$ 13.44万 - 项目类别:
Understanding the impact of structural racism on racial/ethnic inequities in mortality: The Multiethnic Cohort Study
了解结构性种族主义对种族/民族死亡率不平等的影响:多民族队列研究
- 批准号:
10531782 - 财政年份:2022
- 资助金额:
$ 13.44万 - 项目类别:
Improving mechanistic understanding of responsiveness to spinal cord stimulation after spinal cord injury
提高对脊髓损伤后脊髓刺激反应机制的理解
- 批准号:
10672452 - 财政年份:2022
- 资助金额:
$ 13.44万 - 项目类别: