CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.

CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。

基本信息

  • 批准号:
    2349338
  • 负责人:
  • 金额:
    $ 46.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Kara Stowers of Brigham Young University is studying how to improve the synthesis and composition of copper catalysts for reducing carbon dioxide, an important sustainable chemistry goal. Methanol produced from carbon dioxide could be used as a fuel and material feedstock, rendering this chemistry useful for rebalancing the carbon cycle (i.e. cycling the greenhouse gas CO2 to this reduced building block form). Currently copper-based catalysts are sluggish when reacting with carbon dioxide and unstable when converting it to methanol. To improve these copper-based catalysts, an templating method will be used to rapidly create and test new nanoparticle compositions and structures for catalysis. This research aims to establish a flexible and tunable method for catalyst development, including understanding the fundamental molecular interactions of the catalyst with industrially relevant materials, with the goal of increasing catalyst stability and activity. More efficient catalysts would facilitate the transition to a sustainable closed-loop fuel economy and reduce our reliance on non-renewable fossil fuels. Additionally, this research will include student training at both the graduate and undergraduate level to help prepare the next generation of scientists and engineers dedicated to addressing pressing environmental challenges. The project also provides targeted opportunities for female freshman undergraduates to begin early engagement in research and to be provided with mentors.Under this award, Kara Stowers and her research team at Brigham Young University are studying the template-mediated synthesis of copper-based nanoparticle catalysts for the conversion of carbon dioxide to methanol. This project addresses existing catalyst weaknesses in order to improve carbon dioxide conversion and further facilitate methanol as a renewable energy carrier. The scientific goals are to (i) optimize the interface active sites of Cu-based nanoparticles to increase catalytic activity, (ii) identify synthesis conditions that provide stability against nanoparticle aggregation, and (iii) optimize bimetallic compositions of Cu-based nanoparticles to increase reaction selectivity. The experimental approach uses spin-coating to synthesize a metal organic framework (MOF) as a thin film template at ambient pressure and temperature, which should allows for the rapid and reproducible generation of arrays of nanoparticles onto industrially relevant supports after template removal. Using MOFs as a template affords extreme flexibility in tuning of metal cluster centers and bimetallic combinations, and is expected to allow for the reproducible modification of Cu-oxide nanoparticle composition. The team also aims to control spatial and size distributions and oxidation states within these nanoparticulate frameworks. The projected outcomes of the work are to facilitate rational design of Cu-based nanoparticle catalysts with improved catalytic activity, and with improved catalytic stability from reduced aggregation and bimetallic compositions optimized for improved catalytic efficiency. Synthesis of copper metal nanoparticles via thin films on industrially relevant supports should offer an expeditious and scalable strategy for catalyst synthesis and testing. The impact of this research on the field is expected to be in improved technologies for carbon dioxide conversion as well as in a new strategy to carry out nanoparticle assays for rapid, scalable catalyst development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化计划中,杨百翰大学的卡拉·斯托尔(Kara Stowers)正在研究如何改善铜催化剂的合成和组成,以减少二氧化碳的合成和组成,这是一个重要的可持续化学目标。用二氧化碳生产的甲醇可用作燃料和材料原料,使该化学作用可用于重新平衡碳循环(即将温室气体二氧化碳二氧化碳二氧化碳循环到这种减少的构件形式)。目前,基于铜的催化剂在与二氧化碳反应时会缓慢,并且将其转化为甲醇时不稳定。为了改善这些基于铜的催化剂,将使用一种模板方法来快速创建和测试新的纳米颗粒组成和结构进行催化。这项研究旨在为催化剂开发建立一种灵活,可调的方法,包括了解催化剂与工业相关材料的基本分子相互作用,目的是增加催化剂稳定性和活性。更有效的催化剂将有助于过渡到可持续的闭环燃油经济性,并减少我们对不可再生化石燃料的依赖。此外,这项研究将包括在研究生和本科水平的学生培训,以帮助准备下一代科学家和工程师致力于应对紧迫的环境挑战。该项目还为女性新生的本科生提供了有针对性的机会,可以早日参与研究并获得导师。在此奖项之后,Kara Stowers和她的Brigham Young University的研究团队正在研究模板介导的基于铜的纳米粒子催化剂的合成,以将二氧化碳转化为甲醇的碳转化。该项目解决了现有的催化剂弱点,以改善二氧化碳转化率并进一步促进甲醇作为可再生能源载体。 科学目标是(i)优化基于CU的纳米颗粒的接口活性位点以增加催化活性,(ii)确定可为纳米颗粒聚集提供稳定性的合成条件,(III)优化基于CU的纳米颗粒的双金属组成,以提高反应选择性。实验方法使用自旋涂层将金属有机框架(MOF)合成为环境压力和温度下的薄膜模板,这应该使纳米颗粒的阵列快速且可重复地生成在模板拆卸后与工业相关的支撑上。将MOF用作模板具有在金属簇中心和双金属组合的调整方面具有极高的灵活性,并且有望允许对Cu-氧化物纳米粒子组成的可再现修饰。 该团队还旨在控制这些纳米构造框架内的空间和大小分布和氧化状态。这项工作的预期结果是为了促进具有改善催化活性的基于CU的纳米颗粒催化剂的合理设计,并改善了降低聚集的催化稳定性和优化的双金属成分,以提高催化效率。通过薄膜合成铜金属纳米颗粒在工业相关的支持上应为催化剂合成和测试提供迅速而可扩展的策略。这项研究对现场的影响有望在改进的二氧化碳转化技术中,以及在进行纳米颗粒测定的新策略中,以进行快速,可扩展的催化剂开发。该奖项反映了NSF的法定任务,并被认为是通过该基金会的知识分子功能和广泛影响的评估来评估CRETERIA的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

Cu/ZrO2催化剂界面结构的多尺度拓扑优化及其CO2加氢制甲醇性能研究
  • 批准号:
    22305091
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于真实道路的机动车CO2排放因子模型优化与应用研究
  • 批准号:
    42303015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CO2置换CH4水合物分解—生成自促进调控机制及条件优化
  • 批准号:
    22378425
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于健康和生态效益的大气污染物和CO2协同调控路径优化
  • 批准号:
    42307131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耦合动态目标量的孤岛超临界CO2铅铋堆发电系统多维度多目标协同优化方法
  • 批准号:
    52376016
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Energy optimization of post-combustion CO2 using different regeneration scenarios
使用不同再生方案的燃烧后二氧化碳的能量优化
  • 批准号:
    23K19098
    23K19098
  • 财政年份:
    2023
  • 资助金额:
    $ 46.7万
    $ 46.7万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up
Simplified models for sorbent screening and optimization of CO2 capture processes
吸附剂筛选和二氧化碳捕获过程优化的简化模型
  • 批准号:
    575408-2022
    575408-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 46.7万
    $ 46.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Optimization of adsorption-based CO2 capture
基于吸附的 CO2 捕集优化
  • 批准号:
    563463-2021
    563463-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 46.7万
    $ 46.7万
  • 项目类别:
    University Undergraduate Student Research Awards
    University Undergraduate Student Research Awards
Development of a long-term optimization method for resilient district energy supply systems
开发弹性区域能源供应系统的长期优化方法
  • 批准号:
    20K22455
    20K22455
  • 财政年份:
    2020
  • 资助金额:
    $ 46.7万
    $ 46.7万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up
Closing the carbon cycle: optimization of direct air capture process and conversion of ambient CO2 into synthetic fuel
闭合碳循环:优化直接空气捕获过程并将环境二氧化碳转化为合成燃料
  • 批准号:
    505345-2016
    505345-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 46.7万
    $ 46.7万
  • 项目类别:
    Collaborative Research and Development Grants
    Collaborative Research and Development Grants