Degeneration of the Mukai system

向井系统的退化

基本信息

  • 批准号:
    EP/H023461/1
  • 负责人:
  • 金额:
    $ 7.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The background to this research proposal is the existence of naturally occurring integrable systems in algebraic geometry. Traditionally, such a system is a system of differential equations which has enough constants of the motion to allow one in principle to solve completely the equation. Geometrically these constants of the motion are functions on the phase space which Poisson commute and whose common level sets have the structure of a torus. The classical example is the motion of a pendulum which can be solved with elliptic functions; the torus is the curve or more precisely its Picard variety. Another, more complicated one, the geodesics on an ellipsoid, requires hyperelliptic functions, where the torus is a higher-dimensional abelian variety. More generally, one can adopt a coordinate-free viewpoint and consider algebraic varieties which are symplectic and have a fibration by abelian varieties, but they are not so easy to find. There are two quite broad families of such algebraic varieties: one has come to be known as the Hitchin system and the other the Mukai system.The Hitchin system arises from the study of moduli space of Higgs bundles on an algebraic curve. The data consists of a curve and a simple Lie group, and sometimes extra information concerned with marked points on the curve. The Mukai system requires a curve in a K3 surface and a simple Lie group, though most work involves linear groups. Donagi, Ein and Lazarsfeld showed that the Mukai system can be regarded as a nonlinear deformation of the Hitchin system. K3 surfaces have been studied intensely for many years, especially by the proposed visitor, and they have an internal geometry much richer than that of a single curve lying on them. One can therefore expect new features to appear in the Mukai moduli space.The Hitchin system has recently become a valuable tool in other areas of mathematics such as number theory and representation theory. Furthermore, thanks to the work of physicists Witten and Kapustin relating its special properties to electric-magnetic duality, a number of new viewpoints and results have been produced, connecting in particular to the Langlands programme, a unifying vision of many mathematical entities which originates in number theory. The proposal consists of attempting to understand the role of these new points of view in the Mukai system: looking for new structures which in the limit of the degeneration become the known ones on the Hitchin system. The structures include cohomology -- the study of the underlying topology of the spaces and natural representative cycles; the derived category of coherent sheaves -- a more refined way of capturing the relations between complex submanifolds and vector bundles over the space; and an investigation into the idea of replacing the symplectic structure on the K3 surface by the more general notion (still originally founded in differential equations) of a Poisson structure.
这项研究提案的背景是代数几何中自然发生的可积系统的存在。传统上,这样的系统是一个微分方程组,它具有足够的运动常数,原则上可以完全求解该方程。在几何上,这些运动常数是泊松交换的相空间上的函数,其公共水平集具有环面结构。经典的例子是摆的运动,可以用椭圆函数求解;环面是曲线,或更准确地说是它的皮卡德变体。另一种更复杂的方法是椭球体上的测地线,需要超椭圆函数,其中环面是高维阿贝尔变体。更一般地,我们可以采用无坐标的观点并考虑辛的代数簇并通过阿贝尔簇进行纤维化,但它们并不那么容易找到。这种代数簇有两个相当广泛的家族:一个被称为希钦系统,另一个被称为穆凯系统。希钦系统源于对代数曲线上希格斯丛模空间的研究。数据由一条曲线和一个简单的李群组成,有时还包含与曲线上标记点有关的额外信息。 Mukai 系统需要 K3 曲面中的曲线和简单的李群,尽管大多数工作涉及线性群。 Donagi、Ein 和 Lazarsfeld 证明 Mukai 系统可以被视为 Hitchin 系统的非线性变形。 K3 曲面已经被深入研究了很多年,特别是被提议的访客,它们的内部几何形状比其上的单个曲线丰富得多。因此,我们可以期待 Mukai 模空间中出现新的特征。 希钦系统最近已成为数论和表示论等其他数学领域的宝贵工具。此外,由于物理学家维滕和卡普斯汀将其特殊性质与电磁对偶性联系起来,产生了许多新的观点和结果,特别是与朗兰兹纲领有关,朗兰兹纲领是许多数学实体的统一愿景,它起源于数论。该提议包括尝试理解这些新观点在 Mukai 系统中的作用:寻找新的结构,这些结构在退化的极限下成为希钦系统中已知的结构。这些结构包括上同调——研究空间的基础拓扑和自然代表循环;相干滑轮的派生类别——一种捕获空间上复杂子流形和向量束之间关系的更精确的方法;并研究了用泊松结构的更一般概念(最初仍建立在微分方程中)代替 K3 表面上的辛结构的想法。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformations of holomorphic Poisson manifolds
  • DOI:
    10.17323/1609-4514-2012-12-3-567-591
  • 发表时间:
    2011-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Hitchin
  • 通讯作者:
    N. Hitchin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel James Hitchin其他文献

Nigel James Hitchin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel James Hitchin', 18)}}的其他基金

Holomorphic Poisson structures
全纯泊松结构
  • 批准号:
    EP/K033654/1
  • 财政年份:
    2014
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Research Grant

相似国自然基金

不规则代数簇的二典范映射
  • 批准号:
    11226075
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
导出范畴的Fourier-Mukai变换的若干研究
  • 批准号:
    11126268
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
导出范畴的若干问题及应用研究
  • 批准号:
    11071040
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Brill-Noeter theory for semi stable bundles on curves which are contained in a K3 surface and around the fields
K3 曲面和场周围的曲线上的半稳定丛的 Brill-Noeter 理论
  • 批准号:
    16K05101
  • 财政年份:
    2016
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
K3曲面の幾何学
K3表面的几何形状
  • 批准号:
    09J00978
  • 财政年份:
    2009
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Complex symplectic varieties and derived categories
复辛簇和派生范畴
  • 批准号:
    15340008
  • 财政年份:
    2003
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Behavior of discrete invariants of algebraic varieties under deformation
变形下代数簇离散不变量的行为
  • 批准号:
    13640011
  • 财政年份:
    2001
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of vector bundles on an algebraic manifold with the trivial canonical bundle
具有平凡正则丛的代数流形上向量丛的研究
  • 批准号:
    12640024
  • 财政年份:
    2000
  • 资助金额:
    $ 7.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了