Optimal cell factories for membrane protein production

用于膜蛋白生产的最佳细胞工厂

基本信息

  • 批准号:
    BB/Y007603/1
  • 负责人:
  • 金额:
    $ 186.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

SOCIETAL IMPORTANCE. Membrane proteins are essential for life, medicine and industrial biotechnology and yet remain understudied due to their (1) low abundance and (2) physical properties which makes isolation difficult. However, 20-30% of all proteins are membrane proteins with biological functions underpinning signal transduction, nutrient import/export, and cell-to-cell communication. Membrane proteins are potent drug and vaccine targets. Currently, the top ten selling medicines worldwide, and in total US$ 180 billion worth of drug sales, target membrane proteins. Multiple vaccines, including those for COVID-19, Hepatitis B and pertussis, target virus surface or bacterial membrane proteins. Non-pharmaceutical markets include biopesticides (worth US$ 3 billion) and antifungals (worth US$ 19 billion). Artificial expression of membrane proteins is frequently used in pharmacology to identify drug molecules, which may inhibit or enhance protein function. However, engineering high levels of functional membrane protein production remains challenging, limiting the efficiency of drug screening, reducing identification of new drugs and limiting transformative potential. Production of membrane proteins enables progress in promoting human health and provides bio-inspired solutions to pressing societal challenges caused by climate change; however, obtaining high yields of functional protein constitutes a fundamental roadblock to progress which this proposal addresses.SCIENTIFIC CHALLENGE. Despite the importance of membrane proteins in these key industries, their production remains challenging with production of each protein requiring trial and error methods - in some cases requiring screening of 100s of different combinations of experimental factors. This is in part due to the complex process of membrane protein production which results in multiple stresses on cellular production platforms (significantly reducing cell growth and bioprocess productivity). The cell membrane's lipid composition significantly impacts protein function - potentially rendering any proteins produced non-functional due to lack of lipid factors. Therefore, scientists must test multiple different cell types in an expensive and laborious process. This bespoke platform development limits production capacity of functional membrane proteins and, in doing so limits drug screening and development.PROJECT OUTLINE. We address these challenges by first carrying out a detailed systematic characterization of the cellular processes which limit membrane protein production. This will be used to develop a predictive computer aided design tool to enable designs which facilitate both production and cell growth. We will use these tools to design and implement autonomous feedback control strategies that enable living cells to self-regulate protein production in response to stress and therefore maximise production and yield. These systems have the potential to enable increased yields in a 'hands off manner'. We will engineer new cellular regulatory systems capable of tuning the cell's lipid production rate so that the cell membranes' composition and physical properties can be tuned to meet those needed for optimal membrane protein function. We will develop computer aided design tools which enable the prediction of optimal membrane composition. We will demonstrate the function of our new cellular systems to produce high value biomedical membrane proteins and demonstrate their production performance at scale in industrially relevant conditions.
社会重要性。膜蛋白对于生命、医学和工业生物技术至关重要,但由于其 (1) 丰度低和 (2) 物理特性导致分离困难,因此对其研究仍然不足。然而,所有蛋白质中的 20-30% 是膜蛋白,其生物学功能支持信号转导、营养物质导入/导出和细胞间通讯。膜蛋白是有效的药物和疫苗靶标。目前,全球十大畅销药物以及总价值 1800 亿美元的药物均以膜蛋白为靶点。多种疫苗,包括针对 COVID-19、乙型肝炎和百日咳的疫苗,都针对病毒表面或细菌膜蛋白。非药品市场包括生物农药(价值30亿美元)和抗真菌药物(价值190亿美元)。膜蛋白的人工表达在药理学中经常用于识别药物分子,这可能会抑制或增强蛋白质功能。然而,设计高水平的功能性膜蛋白生产仍然具有挑战性,限制了药物筛选的效率,减少了新药的鉴定并限制了变革潜力。膜蛋白的生产能够在促进人类健康方面取得进展,并为应对气候变化带来的紧迫社会挑战提供仿生解决方案;然而,获得高产量的功能性蛋白质构成了该提案所解决的进展的基本障碍。科学挑战。尽管膜蛋白在这些关键行业中很重要,但它们的生产仍然具有挑战性,每种蛋白质的生产都需要反复试验的方法——在某些情况下需要筛选数百种不同的实验因素组合。这部分是由于膜蛋白生产的复杂过程导致细胞生产平台受到多重压力(显着降低细胞生长和生物过程生产力)。细胞膜的脂质成分显着影响蛋白质功能——由于缺乏脂质因子,可能导致产生的任何蛋白质失去功能。因此,科学家必须通过昂贵且费力的过程来测试多种不同的细胞类型。这种定制平台的开发限制了功能性膜蛋白的生产能力,从而限制了药物筛选和开发。项目概要。我们通过首先对限制膜蛋白产生的细胞过程进行详细的系统表征来应对这些挑战。这将用于开发预测性计算机辅助设计工具,以实现促进生产和细胞生长的设计。我们将使用这些工具来设计和实施自主反馈控制策略,使活细胞能够根据压力自我调节蛋白质生产,从而最大限度地提高产量和产量。这些系统有可能以“不干涉的方式”提高产量。我们将设计新的细胞调节系统,能够调节细胞的脂质产生速率,从而可以调节细胞膜的组成和物理特性,以满足最佳膜蛋白功能所需的要求。我们将开发计算机辅助设计工具,能够预测最佳膜成分。我们将展示新细胞系统生产高价值生物医学膜蛋白的功能,并在工业相关条件下大规模展示其生产性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Darlington其他文献

Alexander Darlington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Darlington', 18)}}的其他基金

Parameter identification with optimal experimental design for engineering biology
工程生物学优化实验设计的参数识别
  • 批准号:
    EP/Y00342X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Research Grant

相似国自然基金

基于半胱氨酸细胞毒性有效降低构建高效生产L-半胱氨酸细胞工厂的研究
  • 批准号:
    32371551
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
假单胞菌木质素解聚酶系催化、分泌机理解析,以构建木质素产能细胞工厂
  • 批准号:
    32370115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
半理性设计RNA聚合酶提高微生物细胞工厂生产性能
  • 批准号:
    32371489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于细胞工厂的靶向人源硫酸化O-GalNAc/Mannose多糖组的扩增制备
  • 批准号:
    22307020
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高通量筛选技术理性设计开发高产花姜酮细胞工厂的研究
  • 批准号:
    22308167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Discovery Projects
On the Hunt: Boosting Productivity of Cell Factories by Advanced Searches
寻找中:通过高级搜索提高细胞工厂的生产力
  • 批准号:
    DP240100795
  • 财政年份:
    2024
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Discovery Projects
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
  • 批准号:
    2328291
  • 财政年份:
    2023
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Standard Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
  • 批准号:
    2898887
  • 财政年份:
    2023
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Studentship
Fungi Power: Designer Fungal Cell Factories for Advanced Biomanufacturing
Fungi Power:用于先进生物制造的真菌细胞工厂设计
  • 批准号:
    IM230100154
  • 财政年份:
    2023
  • 资助金额:
    $ 186.27万
  • 项目类别:
    Mid-Career Industry Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了