Reconstructing the evolution of monoamines as neurotransmitters
重建单胺作为神经递质的进化
基本信息
- 批准号:BB/W010305/2
- 负责人:
- 金额:$ 27.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The monoamines are one of the most important groups of neurotransmitter molecules. In humans, they are synthesized in the brain, nerve tissue and adrenal glands. These molecules help to regulate processes such as: emotions, memory, blood-flow, appetite, sleep, cognition and many more. The most classic examples of monoamines include serotonin, dopamine and noradrenalin, and they typically act through coupling to a group of receptors known as G-protein coupled receptors (GPCRs). They are the largest group of receptors in animals (including humans) and they are a significant pharmacological target. Intriguingly, monoamines and the enzymes responsible for their synthesis have been identified not only in different animals but also in plants, fungi and some bacteria. Indicating that the synthesis and occurrence of these neurotransmitter molecules predate the existence of the nervous system and neurons. To date, it is not clear how and when during animal evolution monoamines acquired their functions in neuronal signalling, and why they became so important for neuronal functions. Thus, the goal of this fellowship is to reconstruct the evolution of monoaminergic signalling in non-bilaterian animals. To achieve this, I will use a wide set of computational and experimental strategies that will allow me to answer very interesting key biological questions such as: "How, when, and why did the monoamines (present in plants and bacteria) become neurotransmitters in animals?" "How ancestral is the use of monoamines as neurotransmitters?" "How did the nervous system evolve"? "What is the role of monoamines in the evolution of neurons and nervous systems?"One of the most important groups of animals in which to study evolution are the early-diverging animals known as 'non-bilaterians', which comprise organisms such as sea sponges, jellyfish, corals, and comb-jellies. These animals are believed to have appeared before the emergence of animals belonging to the Bilateria-which include species such as mice, fish, flies, and humans. One of the main characteristics of the non-bilaterians is the lack of a brain or a complex centralised nervous system. In fact, some of them, such as the sponges and placozoans, completely lack a nervous system or neurons. Being an "ancestral" group of animals, the non-bilaterians will allow us to understand the evolution and development of more complex animals. The aims of this multidisciplinary fellowship align with the BBSRC's future directive of "Advancing the frontiers of bioscience: Understanding of the rules of life" and the strategic priority area "Data driven biology". This research has exciting potential for breaking new ground in fundamental science, and also for practical applications in fields such as:Ecology and conservation: Most of the known non-bilaterian animals are marine animals. Some of them have extremely important ecological roles, such as the jellyfish and corals (Cnidarians). Coral reefs provide an important ecosystem for marine animals, including valuable marine resources for local communicates and environments. Corals are currently threatened by processes such as bleaching, climate change, storms and invasive species such as the crown-of-thorns starfish (Acanthaster planci). Understanding the processes involved in cellular signalling and cell communication will help to understand and predict their behaviour, reproduction and conservation. Neurosciences and medicine: Monoamines act through the activation of GPCRs, which are very important pharmacological targets. There are still many human receptors for which no ligands have been identified. Reconstructing the evolution of these receptors including non-bilaterian animals will allow us to better understand how these receptors appeared and evolved in humans animals and potentially identify the ligands that activate them.
单胺是最重要的神经递质分子之一。在人类中,它们在大脑、神经组织和肾上腺中合成。这些分子有助于调节情绪、记忆、血流、食欲、睡眠、认知等过程。单胺最经典的例子包括血清素、多巴胺和去甲肾上腺素,它们通常通过与一组称为 G 蛋白偶联受体 (GPCR) 的受体偶联来发挥作用。它们是动物(包括人类)中最大的受体群体,也是重要的药理学靶点。有趣的是,单胺和负责合成单胺的酶不仅在不同的动物中被发现,而且在植物、真菌和一些细菌中也被发现。表明这些神经递质分子的合成和出现早于神经系统和神经元的存在。迄今为止,尚不清楚在动物进化过程中单胺如何以及何时获得其在神经元信号传导中的功能,以及为什么它们对神经元功能变得如此重要。因此,该奖学金的目标是重建非对称动物中单胺能信号的进化。为了实现这一目标,我将使用一系列广泛的计算和实验策略,这将使我能够回答非常有趣的关键生物学问题,例如:“单胺(存在于植物和细菌中)如何、何时以及为何成为动物的神经递质?” “使用单胺作为神经递质有多古老?” “神经系统是如何进化的”? “单胺在神经元和神经系统的进化中起什么作用?”研究进化的最重要的动物群体之一是被称为“非对称对称动物”的早期分化动物,其中包括海洋生物等海绵、水母、珊瑚和栉水母。据信,这些动物出现在双边对称动物出现之前,其中包括老鼠、鱼、苍蝇和人类等物种。非两侧对称动物的主要特征之一是缺乏大脑或复杂的中枢神经系统。事实上,其中一些动物,例如海绵动物和长生动物,完全缺乏神经系统或神经元。作为动物的“祖先”群体,非两侧对称动物将使我们能够了解更复杂动物的进化和发展。这一多学科研究金的目标与 BBSRC 的未来指令“推进生物科学前沿:理解生命规则”和战略优先领域“数据驱动生物学”相一致。这项研究在基础科学方面具有令人兴奋的新突破,也具有在以下领域的实际应用的潜力:生态和保护:大多数已知的非对称动物都是海洋动物。其中一些具有极其重要的生态作用,例如水母和珊瑚(刺胞动物)。珊瑚礁为海洋动物提供了重要的生态系统,包括用于当地通讯和环境的宝贵海洋资源。目前,珊瑚受到白化、气候变化、风暴和棘冠海星等入侵物种的威胁。了解细胞信号传导和细胞通讯所涉及的过程将有助于理解和预测它们的行为、繁殖和保护。神经科学和医学:单胺通过激活 GPCR 发挥作用,GPCR 是非常重要的药理学靶点。仍有许多人类受体尚未确定其配体。重建这些受体(包括非对称动物)的进化将使我们能够更好地了解这些受体如何在人类动物中出现和进化,并有可能识别激活它们的配体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Yanez Guerra其他文献
Luis Yanez Guerra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Yanez Guerra', 18)}}的其他基金
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Research Grant
Reconstructing the evolution of monoamines as neurotransmitters
重建单胺作为神经递质的进化
- 批准号:
BB/W010305/1 - 财政年份:2022
- 资助金额:
$ 27.93万 - 项目类别:
Fellowship
相似国自然基金
基于进化算法的云冷杉针阔混交林多目标经营规划研究
- 批准号:32301582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脓肿分枝杆菌耐药基因的进化机制研究
- 批准号:32300507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向超大规模多目标的进化迁移优化算法研究及应用
- 批准号:62306180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于杂交育种协同进化蚁群算法的工业大数据特征选择研究
- 批准号:62376089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
北极鳕科鱼类食性适应性进化研究
- 批准号:32370565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
- 批准号:
NE/Y001338/1 - 财政年份:2026
- 资助金额:
$ 27.93万 - 项目类别:
Research Grant
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
- 批准号:
NE/Y000811/1 - 财政年份:2026
- 资助金额:
$ 27.93万 - 项目类别:
Research Grant
SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
- 批准号:
2400789 - 财政年份:2025
- 资助金额:
$ 27.93万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OCE-PRF: Do dead shells make good homes? Assessing the Development, Stability, and Evolution of Shell Gravel Habitats Across Space and Time
博士后奖学金:OCE-PRF:死去的贝壳能成为美好的家园吗?
- 批准号:
2307502 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Fellowship Award