21ENGBIO Engineered orthogonal ribosomes for programmable protein modification
21ENGBIO 用于可编程蛋白质修饰的工程正交核糖体
基本信息
- 批准号:BB/W012448/1
- 负责人:
- 金额:$ 12.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are tiny nano-scale molecular machines that act as the workhorses of all living cells. They underpin crucial tasks spanning sensing and signalling, the coordination of metabolism and even the self-assembly of structural elements of the cell. Many of these functions can be tailored by the modification of the proteins involved, offering a way for a cell to diversity its behaviour. The broad applications of proteins in biological systems makes them an important target for engineering new forms of biology or harnessing biological components and functions in other areas like Material Science. Being able to synthesise and modify proteins on demand could unlock this huge potential.In this project we aim to directly tackle this challenge by creating what is termed an "orthogonal ribosome" that can synthesise proteins in parallel to a cell's native process. Importantly, our orthogonal ribosomes will be engineered to include attachment points for secondary components that are able to modify the protein being synthesised. By synthesising our proteins with orthogonal machinery, we avoid modifying native cellular proteins in a detrimental way and thus have the freedom to modify our own in diverse ways. Furthermore, by switching the modifying attachment that is present, we can easily change the type of modification made, creating a platform for programmable protein synthesis and modification.To achieve this ambitious goal, we will use newly developed experimental methods that can create vast numbers of orthogonal ribosome designs with different attachment points and assess the impact these have on the ability for the ribosome to effectively synthesise a protein. Those designs that work well will be selected and then modifying attachments precisely designed using computer models and simulation to have shapes that ensure the region involved in modification is perfectly positioned on the ribosome. Finally, we will combine the engineered orthogonal ribosomes and modifying attachments within living cells and test their ability to modifying a target protein such that it becomes localised to the edge of a cell when altered - a change we will be able to easily monitor using single-cell microscopy.This project is an attempt to develop the new methods needed to engineer the complex biological process of protein synthesis through the "augmentation" of a native biomolecular machine - the ribosome. Our flexible and modular approach using "plug-n-play" components offers the ability to rapidly alter the modifications made to a target protein without the need to build a new system from scratch, and opens opportunities for Biologists, Biological Engineers, and Material Scientists to better understand the function of proteins in their native context, precisely engineer their properties in living cells, and make use of highly modified proteins as nanoscale building blocks for new forms of sustainable, high-performance material. More broadly, our methodology also offers a path to harnessing other core cellular processes and repurposing their functionalities for novel applications in the emerging area of Engineering Biology.
蛋白质是微小的纳米级分子机器,充当所有活细胞的工作主场。它们是涵盖感应和信号传导的关键任务,代谢的协调,甚至是细胞结构元素的自组装。这些功能中的许多功能都可以通过修饰所涉及的蛋白质来量身定制,这为细胞的行为提供了一种方法。蛋白质在生物系统中的广泛应用使它们成为工程生物学形式的重要目标,或利用材料科学等其他领域的生物成分和功能。能够按需合成和修改蛋白质可以解锁这一巨大潜力。在这个项目中,我们旨在通过创建所谓的“正交核糖体”来直接应对这一挑战,该挑战可以与细胞的天然过程并行合成蛋白质。重要的是,我们的正交核糖体将被设计为包括能够修改要合成的蛋白质的二级成分的附件。通过用正交机械合成蛋白质,我们避免以有害的方式修饰天然细胞蛋白,因此可以自由以各种方式修改我们自己的蛋白质。此外,通过切换存在的修改附件,我们可以轻松地更改所做的修改类型,为可编程蛋白质合成和修改创建平台。为了实现这一雄心勃勃的目标,我们将使用新开发的实验方法,这些方法可以创建大量正交核能设计具有不同的依恋点,并评估这些对这些核心的影响,可以有效地进行核心的能力。这些工作正常的设计将被选中,然后修改使用计算机模型和仿真的精确设计的附件,以确保与修饰所涉及的区域的形状完美地位于核糖体上。最后,我们将结合工程的正交核糖体和修改活细胞内的附件,并测试其修饰靶蛋白的能力,使其在更改时它位于细胞的边缘上 - 一种更改 - 我们将能够使用单细胞显微镜轻松监视。该项目是通过工程来开发蛋白质生物学的新方法来开发一种新方法。核糖体。 Our flexible and modular approach using "plug-n-play" components offers the ability to rapidly alter the modifications made to a target protein without the need to build a new system from scratch, and opens opportunities for Biologists, Biological Engineers, and Material Scientists to better understand the function of proteins in their native context, precisely engineer their properties in living cells, and make use of highly modified proteins as nanoscale building blocks for new forms of sustainable,高性能材料。更广泛地说,我们的方法还为利用其他核心细胞过程提供了一条途径,并重新利用其在工程生物学新兴领域的新应用功能。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering orthogonal ribosomes for real-time monitoring using fluorescence
- DOI:10.1101/2023.11.19.567736
- 发表时间:2023-11-19
- 期刊:
- 影响因子:0
- 作者:Csibra,Eszter;Klopprogge,Bjarne;Gorochowski,Thomas E.
- 通讯作者:Gorochowski,Thomas E.
Scalable design of repeat protein structural dynamics via probabilistic coarse-grained models
通过概率粗粒度模型重复蛋白质结构动力学的可扩展设计
- DOI:10.1101/2024.03.13.584748
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Sarvaharman S
- 通讯作者:Sarvaharman S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Gorochowski其他文献
Thomas Gorochowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Gorochowski', 18)}}的其他基金
Cyanobacteria engineering for restoring environments (CYBER)
用于恢复环境的蓝藻工程(CYBER)
- 批准号:
BB/Y007638/1 - 财政年份:2024
- 资助金额:
$ 12.84万 - 项目类别:
Research Grant
相似国自然基金
字典设计理论统一下的广义正交线性调频复用信号应用于水声探测通信一体化的波形设计方法研究
- 批准号:52371352
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型拉—剪耦合耗能连接的正交胶合木剪力墙抗侧力机理与设计方法
- 批准号:52308259
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复杂列正交空间填充设计与非正规设计的理论与构造
- 批准号:12301323
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低时延高可靠非正交多载波调制结构智能化设计理论方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
光热正交调控聚合物交联拓扑结构和链构象的方法设计和研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered plant receptors as orthogonal neuronal switches
作为正交神经元开关的工程植物受体
- 批准号:
DP200102093 - 财政年份:2020
- 资助金额:
$ 12.84万 - 项目类别:
Discovery Projects
Engineering synthetic helper cells that autonomously deliver orthogonal IL-2 to selectively promote therapeutic T cell proliferation in tumors
工程合成辅助细胞可自主递送正交 IL-2 以选择性促进肿瘤中治疗性 T 细胞增殖
- 批准号:
10285941 - 财政年份:2019
- 资助金额:
$ 12.84万 - 项目类别:
Amelioration of Beta-hemoglobinopathies by efficient precise deletion of the +58 BCL11A enhancer using orthogonal Cas9-Cas9 chimeras
使用正交 Cas9-Cas9 嵌合体有效精确删除 58 个 BCL11A 增强子来改善 β 血红蛋白病
- 批准号:
9761025 - 财政年份:2019
- 资助金额:
$ 12.84万 - 项目类别:
Enabling synthetic biology with an expanded library of engineered orthogonal genetic logic gates and switches
通过扩展的工程正交遗传逻辑门和开关库实现合成生物学
- 批准号:
BB/N007212/1 - 财政年份:2016
- 资助金额:
$ 12.84万 - 项目类别:
Research Grant