Cyanobacteria engineering for restoring environments (CYBER)

用于恢复环境的蓝藻工程(CYBER)

基本信息

  • 批准号:
    BB/Y007638/1
  • 负责人:
  • 金额:
    $ 200.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Pollution is one of the most pressing global challenges of today, threatening our ecosystems, health, and wellbeing. Traditional approaches to environmental clean-up often fall short due to the complexity of deploying them at scale into natural environments. There is an urgent need to rethink our strategy. This project aims to harness the potential of cyanobacteria - one of the oldest and most diverse organisms on Earth - to unlock new approaches. Cyanobacteria are ubiquitous in many environments and play a crucial role in basic ecosystem services due to their ability to fix nitrogen and perform photosynthesis. But despite a growing interest in the use of cyanobacteria for bioremediation, we currently lack reliable biological parts and experimental tools to safely reprogram cyanobacteria for this task. In this project we propose a multidisciplinary effort to overcome these hurdles and make engineered cyanobacteria a feasible platform for restoration of degraded environments. To archive this, our project is built around four specific objectives. First, we will aim to construct what we term "ecological wind tunnels". These artificial ecosystems that we can build in the lab, better mimic the complex spatial-temporal organization and interactions found in the real world. By subjecting engineered organisms to these more realistic conditions, we can enhance their functionality, have greater confidence in their ability to perform in natural environments, and evaluate their ecological impact more accurately than in a typical lab setting. Second, we will use massively parallel assays and sequencing-based surveillance techniques, combined with rigorous measurements and advanced artificial intelligence, to facilitate the rapid development of biological tools for reprogramming cyanobacteria. Third, to ensure the traceability of our engineered cells in natural environments and facilitate their safe deployment, we will develop approaches to "barcode" our organisms. This will enable us to better track their dispersal and establish ownership of the organisms in commercial contexts. Finally, as a case study, we will engineer cyanobacteria that are able to naturally absorb various pollutants from the environment and alter their biology to simplify their physical removal from the environment. This ability to remove our engineered biology in a targeted way will help to reduce any long-term impact our cells have on a natural ecosystem by allowing them to only be present temporarily and not provide sufficient time for them to become embedded.In addition to the science, we also recognise the crucial role of early engagement with society and policy makers around the acceptable use of this technology as it is developed. We have therefore partnered with a range of leading academics, companies, non-profit organisations, and funders to build a community and will hold inclusive events that connect our science to wider society and decision makers in government. We aim to use this point of interaction to understand concerns, communicate evidence-based risks and benefits regarding the science, and explore possible routes towards the acceptable use of engineered biology in environmental contexts.Together, the science and engagement performed in this project will help revolutionize pollution control strategies and kick-start new sustainable bio-based solutions to environmental restoration. It will also develop the crucial foundational tools and methods needed to de-risk the deployment of engineered biology into real-world ecosystems and help to establish cyanobacteria as a versatile and safe platform for tackling diverse environmental challenges.
污染是当今最紧迫的全球挑战之一,威胁着我们的生态系统、健康和福祉。由于将其大规模部署到自然环境中的复杂性,传统的环境清理方法往往存在不足。迫切需要重新考虑我们的战略。该项目旨在利用蓝藻(地球上最古老、最多样化的生物体之一)的潜力来解锁新方法。蓝藻在许多环境中普遍存在,由于其固氮和进行光合作用的能力,在基本生态系统服务中发挥着至关重要的作用。但是,尽管人们对使用蓝藻进行生物修复越来越感兴趣,但我们目前缺乏可靠的生物部件和实验工具来安全地重新编程蓝藻以完成这项任务。在这个项目中,我们提出了多学科的努力来克服这些障碍,并使工程蓝藻成为恢复退化环境的可行平台。为了实现这一目标,我们的项目围绕四个具体目标而构建。首先,我们的目标是建设“生态风洞”。我们可以在实验室中构建的这些人工生态系统可以更好地模仿现实世界中复杂的时空组织和相互作用。通过将工程生物体置于这些更真实的条件下,我们可以增强它们的功能,对它们在自然环境中的表现更有信心,并比在典型的实验室环境中更准确地评估它们的生态影响。其次,我们将使用大规模并行测定和基于测序的监测技术,结合严格的测量和先进的人工智能,以促进蓝藻重编程生物工具的快速开发。第三,为了确保我们的工程细胞在自然环境中的可追溯性并促进其安全部署,我们将开发对我们的生物体进行“条形码”的方法。这将使我们能够更好地追踪它们的传播并在商业环境中建立生物体的所有权。最后,作为一个案例研究,我们将设计蓝藻,使其能够自然地吸收环境中的各种污染物,并改变其生物学特性,以简化其从环境中的物理去除。这种以有针对性的方式消除我们的工程生物的能力将有助于减少我们的细胞对自然生态系统的任何长期影响,因为它们只能暂时存在,而不能为它们提供足够的时间嵌入。科学方面,我们还认识到,随着这项技术的发展,与社会和政策制定者的早期接触对于该技术的可接受使用具有至关重要的作用。因此,我们与一系列领先的学者、公司、非营利组织和资助者合作建立了一个社区,并将举办包容性活动,将我们的科学与更广泛的社会和政府决策者联系起来。我们的目标是利用这一互动点来了解问题,交流有关科学的基于证据的风险和收益,并探索在环境背景下可接受的工程生物学使用的可能途径。总之,该项目中进行的科学和参与将有助于彻底改变污染控制策略,并启动新的可持续生物基环境恢复解决方案。它还将开发必要的关键基础工具和方法,以降低将工程生物学部署到现实世界生态系统中的风险,并帮助将蓝藻建立为应对各种环境挑战的多功能且安全的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Gorochowski其他文献

Thomas Gorochowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Gorochowski', 18)}}的其他基金

21ENGBIO Engineered orthogonal ribosomes for programmable protein modification
21ENGBIO 用于可编程蛋白质修饰的工程正交核糖体
  • 批准号:
    BB/W012448/1
  • 财政年份:
    2022
  • 资助金额:
    $ 200.91万
  • 项目类别:
    Research Grant

相似国自然基金

森林结构与性状对碳氮淋失过程的影响及调控机制——以南水北调中线工程水源地生态恢复林为例
  • 批准号:
    32371654
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
构建工程化外泌体应用于调控周围神经损伤后运动感觉功能恢复
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向生态工程驱动的甘肃黄土高原植被恢复遥感监测与成效评估
  • 批准号:
    42261069
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
植被恢复对土壤微生物C:N:P内稳态的影响机制:以南水北调中线工程水源地为例
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
石羊河流域综合治理生态恢复效果评价及生态恢复机理研究——以下游民勤盆地为例
  • 批准号:
    41907406
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Restoring gut symbiosis caused by a Western diet through a Mediterranean-like diet combined with novel probiotics that target the gut-brain metabolic interactome
通过类地中海饮食结合针对肠-脑代谢相互作用组的新型益生菌,恢复西方饮食引起的肠道共生
  • 批准号:
    478931
  • 财政年份:
    2023
  • 资助金额:
    $ 200.91万
  • 项目类别:
    Operating Grants
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
  • 批准号:
    10734465
  • 财政年份:
    2023
  • 资助金额:
    $ 200.91万
  • 项目类别:
Restoring hair follicle stem cell fate and heterogeneity outside their native niche
在其天然生态位之外恢复毛囊干细胞的命运和异质性
  • 批准号:
    10653033
  • 财政年份:
    2022
  • 资助金额:
    $ 200.91万
  • 项目类别:
Restoring gut symbiosis caused by a Western diet through a Mediterranean-like diet combined with novel probiotics that target the gut-brain metabolic interactome
通过类地中海饮食结合针对肠-脑代谢相互作用组的新型益生菌,恢复西方饮食引起的肠道共生
  • 批准号:
    473257
  • 财政年份:
    2022
  • 资助金额:
    $ 200.91万
  • 项目类别:
    Operating Grants
Restoring hair follicle stem cell fate and heterogeneity outside their native niche
在其天然生态位之外恢复毛囊干细胞的命运和异质性
  • 批准号:
    10449490
  • 财政年份:
    2022
  • 资助金额:
    $ 200.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了